![2024屆江西省撫州第一中學(xué)高二上數(shù)學(xué)期末考試試題含解析_第1頁](http://file4.renrendoc.com/view/4344d33f80f4346d77aa05cc67cd85c2/4344d33f80f4346d77aa05cc67cd85c21.gif)
![2024屆江西省撫州第一中學(xué)高二上數(shù)學(xué)期末考試試題含解析_第2頁](http://file4.renrendoc.com/view/4344d33f80f4346d77aa05cc67cd85c2/4344d33f80f4346d77aa05cc67cd85c22.gif)
![2024屆江西省撫州第一中學(xué)高二上數(shù)學(xué)期末考試試題含解析_第3頁](http://file4.renrendoc.com/view/4344d33f80f4346d77aa05cc67cd85c2/4344d33f80f4346d77aa05cc67cd85c23.gif)
![2024屆江西省撫州第一中學(xué)高二上數(shù)學(xué)期末考試試題含解析_第4頁](http://file4.renrendoc.com/view/4344d33f80f4346d77aa05cc67cd85c2/4344d33f80f4346d77aa05cc67cd85c24.gif)
![2024屆江西省撫州第一中學(xué)高二上數(shù)學(xué)期末考試試題含解析_第5頁](http://file4.renrendoc.com/view/4344d33f80f4346d77aa05cc67cd85c2/4344d33f80f4346d77aa05cc67cd85c25.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆江西省撫州第一中學(xué)高二上數(shù)學(xué)期末考試試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為了更好地解決就業(yè)問題,國家在2020年提出了“地?cái)偨?jīng)濟(jì)”為響應(yīng)國家號召,有不少地區(qū)出臺了相關(guān)政策去鼓勵“地?cái)偨?jīng)濟(jì)”.某攤主2020年4月初向銀行借了免息貸款8000元,用于進(jìn)貨,因質(zhì)優(yōu)價(jià)廉,供不應(yīng)求,據(jù)測算:每月獲得的利潤是該月初投入資金的20%,每月底扣除生活費(fèi)800元,余款作為資金全部用于下月再進(jìn)貨,如此繼續(xù),預(yù)計(jì)到2021年3月底該攤主的年所得收入為()(取,)A.24000元 B.26000元C.30000元 D.32000元2.某學(xué)校要從5名男教師和3名女教師中隨機(jī)選出3人去支教,則抽取的3人中,女教師最多為1人的選法種數(shù)為()A.10 B.30C.40 D.463.在正方體中,分別是線段的中點(diǎn),則點(diǎn)到直線的距離是()A. B.C. D.4.已知直線與圓相切,則的值是()A. B.C. D.5.已知橢圓的焦點(diǎn)分別為,,橢圓上一點(diǎn)P與焦點(diǎn)的距離等于6,則的面積為()A.24 B.36C.48 D.606.下列關(guān)于命題的說法錯(cuò)誤的是A.命題“若,則”的逆否命題為“若,則”B.“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件C.命題“,使得”的否定是“,均有”D.“若為的極值點(diǎn),則”的逆命題為真命題7.若實(shí)數(shù)x,y滿足不等式組,則的最小值為()A. B.0C. D.28.若指數(shù)函數(shù)(且)與三次函數(shù)的圖象恰好有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.9.對于公差為1的等差數(shù)列,;公比為2的等比數(shù)列,,則下列說法不正確的是()A.B.C.數(shù)列為等差數(shù)列D.數(shù)列的前項(xiàng)和為10.已知拋物線的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合,過坐標(biāo)原點(diǎn)作兩條互相垂直的射線,,與分別交于,則直線過定點(diǎn)()A. B.C. D.11.己知命題;命題,則下列命題中為假命題的是()A. B.C. D.12.已知,,若,則()A.9 B.6C.5 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)為橢圓上的動點(diǎn),為圓的任意一條直徑,則的最大值是__________14.若橢圓的一個(gè)焦點(diǎn)為,則p的值為______15.與雙曲線有共同漸近線,并且經(jīng)過點(diǎn)的雙曲線方程是______16.已知圓和直線.(1)求直線l所經(jīng)過的定點(diǎn)的坐標(biāo),并判斷直線與圓的位置關(guān)系;(2)求當(dāng)k取什么值,直線被圓截得的弦最短,并求這條最短弦的長.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為正方形,底面,,為棱的中點(diǎn).(1)求直線與所成角的余弦值;(2)求直線與平面所成角的正弦值;(3)求二面角的余弦值.18.(12分)如圖,在直三棱柱中,,是中點(diǎn).(1)求點(diǎn)到平面的的距離;(2)求平面與平面夾角的余弦值;19.(12分)各項(xiàng)都為正數(shù)的數(shù)列的前項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)求;(3)設(shè),數(shù)列的前項(xiàng)和為,求使成立的的最小值.20.(12分)已知函數(shù),且a0(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;(2)記函數(shù),若函數(shù)有兩個(gè)零點(diǎn),①求實(shí)數(shù)a的取值范圍;②證明:21.(12分)已知圓與(1)過點(diǎn)作直線與圓相切,求的方程;(2)若圓與圓相交于、兩點(diǎn),求的長22.(10分)拋物線的焦點(diǎn)為F,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn)(1)若,求直線AB的斜率;(2)設(shè)點(diǎn)M在線段AB上運(yùn)動,原點(diǎn)O關(guān)于點(diǎn)M的對稱點(diǎn)為C,求四邊形OACB面積的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】設(shè),從4月份起每月底用于下月進(jìn)借貨的資金依次記為,由題意得出的遞推關(guān)系,變形構(gòu)造出等比數(shù)列,由得其通項(xiàng)公式后可得結(jié)論【詳解】設(shè),從4月份起每月底用于下月進(jìn)借貨的資金依次記為,,、同理可得,所以,而,所以數(shù)列是等比數(shù)列,公比為,所以,,總利潤為故選:D【點(diǎn)睛】思路點(diǎn)睛:本題考查數(shù)列的實(shí)際應(yīng)用.解題方法是用數(shù)列表示月初進(jìn)貨款,得出遞推關(guān)系,然后構(gòu)造等比數(shù)列求解2、C【解析】可分為女教師0人,男教師3人和女教師1人,男教師2人兩種情況,用組合數(shù)表示計(jì)算即得解【詳解】女教師最多為1人即女教師為0人或者1人若女教師為0人,則男教師有3人,有種選擇;若女教師為1人,則男教師2人,有種選擇;故女教師最多為1人的選法種數(shù)為種故選:C3、A【解析】以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系,然后,列出計(jì)算公式進(jìn)行求解即可【詳解】如圖,以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系.因?yàn)?,所以,所以,則點(diǎn)到直線的距離故選:A4、D【解析】直線與圓相切,直接通過求解即可.【詳解】因?yàn)橹本€與圓相切,所以圓心到直線的距離,所以,.故選:D5、A【解析】由題意可得出與、、的值,在根據(jù)橢圓定義得的值,即可得到是直角三角形,即可求出的面積.【詳解】由題意知,.根據(jù)橢圓定義可知,是直角三角形,.故選:A.6、D【解析】根據(jù)命題及其關(guān)系、充分條件與必要條件、導(dǎo)數(shù)在函數(shù)中應(yīng)用、全稱量詞與存在量詞等相關(guān)知識一一判斷可得答案.【詳解】解:A,由原命題與逆否命題的構(gòu)成關(guān)系,可知A正確;B,當(dāng)a=2>1時(shí),函數(shù)在定義域內(nèi)是單調(diào)遞增函數(shù),當(dāng)函數(shù)定義域內(nèi)是單調(diào)遞增函數(shù)時(shí),a>1.所以B正確;C,由于存在性命題的否定是全稱命題,所以",使得"的否定是",均有,所以C正確;D,的根不一定是極值點(diǎn),例如:函數(shù),則=0,即x=0就不是極值點(diǎn),所以“若為的極值點(diǎn),則”的逆命題為假命題,故選D.【點(diǎn)睛】本題主要考查命題及其關(guān)系、充分條件與必要條件、導(dǎo)數(shù)在函數(shù)中應(yīng)用、全稱量詞與存在量詞等相關(guān)知識,需牢記并靈活運(yùn)用相關(guān)知識.7、A【解析】畫出可行域,令,則,結(jié)合圖形求出最小值,即可得解;【詳解】解:畫出不等式組,表示的平面區(qū)域如圖陰影部分所示,由,解得,即,令,則.結(jié)合圖形可知當(dāng)過點(diǎn)時(shí),取得最小值,且,即故選:A8、A【解析】分析可知直線與曲線在上的圖象有兩個(gè)交點(diǎn),令可得出,令,問題轉(zhuǎn)化為直線與曲線有兩個(gè)交點(diǎn),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可得出實(shí)數(shù)的取值范圍.【詳解】當(dāng)時(shí),,,此時(shí)兩個(gè)函數(shù)的圖象無交點(diǎn);當(dāng)時(shí),由得,可得,令,其中,則直線與曲線有兩個(gè)交點(diǎn),,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,則,且當(dāng)時(shí),,作出直線與曲線如下圖所示:由圖可知,當(dāng)時(shí),即當(dāng)時(shí),指數(shù)函數(shù)(且)與三次函數(shù)的圖象恰好有兩個(gè)不同的交點(diǎn).故選:A.9、B【解析】由等差數(shù)列的通項(xiàng)公式判定選項(xiàng)A正確;利用等比數(shù)列的通項(xiàng)公式求出,即判定選項(xiàng)B錯(cuò)誤;利用對數(shù)的運(yùn)算和等差數(shù)列的定義判定選項(xiàng)C正確;利用錯(cuò)位相減法求和,即判定選項(xiàng)D正確.【詳解】對于A:由條件可得,,即選項(xiàng)A正確;對于B:由條件可得,,即選項(xiàng)B錯(cuò)誤;對于C:因?yàn)?,所以,則,即數(shù)列是首項(xiàng)和公差均為的等差數(shù)列,即選項(xiàng)C正確;對于D:,設(shè)數(shù)列的前項(xiàng)和為,則,,上面兩式相減可得,所以,即選項(xiàng)D正確.故選:B.10、A【解析】由橢圓方程可求得坐標(biāo),由此求得拋物線方程;設(shè),與拋物線方程聯(lián)立可得韋達(dá)定理的形式,根據(jù)可得,由此構(gòu)造方程求得,根據(jù)直線過定點(diǎn)的求法可求得定點(diǎn).【詳解】由橢圓方程知其焦點(diǎn)坐標(biāo)為,又拋物線焦點(diǎn),,解得:,則拋物線的方程為,由題意知:直線斜率不為,可設(shè),由得:,則,即,設(shè),,則,,,,,解得:或;又與坐標(biāo)原點(diǎn)不重合,,,當(dāng)時(shí),,直線恒過定點(diǎn).故選:A.【點(diǎn)睛】思路點(diǎn)睛:本題考查直線與拋物線綜合應(yīng)用中的直線過定點(diǎn)問題的求解,求解此類問題的基本思路如下:①假設(shè)直線方程,與拋物線方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達(dá)定理的形式;③利用韋達(dá)定理表示出已知中的等量關(guān)系,代入韋達(dá)定理可整理得到變量間的關(guān)系,從而化簡直線方程;④根據(jù)直線過定點(diǎn)的求解方法可求得結(jié)果.11、A【解析】根據(jù)或且非命題的真假進(jìn)行判斷即可.【詳解】當(dāng),故命題是真命題,,故命題是真命題.因此可知是假命題,是真命題,,均為真命題.故選:A12、D【解析】根據(jù)空間向量垂直的坐標(biāo)表示即可求解.【詳解】.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)點(diǎn),則且,計(jì)算得出,再利用二次函數(shù)的基本性質(zhì)即可求得的最大值.【詳解】解:圓的圓心為,半徑長為,設(shè)點(diǎn),由點(diǎn)為橢圓上的動點(diǎn),可得:且,由為圓的任意一條直徑可得:,,,,,當(dāng)時(shí),取得最大值,即.故答案為:.14、3【解析】利用橢圓標(biāo)準(zhǔn)方程概念求解【詳解】因?yàn)榻裹c(diǎn)為,所以焦點(diǎn)在y軸上,所以故答案:315、【解析】設(shè)雙曲線的方程為,將點(diǎn)代入方程可求的值,從而可得結(jié)果【詳解】設(shè)與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經(jīng)過點(diǎn),所求的雙曲線方程為:,整理得故答案為【點(diǎn)睛】本題考查雙曲線的方程與簡單性質(zhì),意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,屬于中檔題.與共漸近線的雙曲線方程可設(shè)為,只需根據(jù)已知條件求出即可.16、(1)直線過定點(diǎn)P(4,3),直線和圓總有兩個(gè)不同交點(diǎn)(2)k=1,【解析】(1)把直線方程化為點(diǎn)斜式方程即可;(2)由圓的性質(zhì)知,當(dāng)直線與PC垂直時(shí),弦長最短.【小問1詳解】直線方程可化為,則直線過定點(diǎn)P(4,3),又圓C標(biāo)準(zhǔn)方程為,圓心為,半徑為,而,所以點(diǎn)P在圓內(nèi),所以不論k取何值,直線和圓總有兩個(gè)不同交點(diǎn).【小問2詳解】由圓的性質(zhì)知,當(dāng)直線與PC垂直時(shí),弦長最短.,所以k=1時(shí)弦長最短.弦長為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè).(1)寫出、的坐標(biāo),利用空間向量法計(jì)算出直線與所成角的余弦值;(2)求出平面的一個(gè)法向量的坐標(biāo),利用空間向量法可計(jì)算得出直線與平面所成角的正弦值;(3)求出平面的一個(gè)法向量的坐標(biāo),利用空間向量法可求得二面角的余弦值.【詳解】平面,四邊形為正方形,設(shè).以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,如下圖所示:則、、、、、.(1),,,所以,異面直線、所成角的余弦值為;(2)設(shè)平面的一個(gè)法向量為,,,由,可得,取,可得,則,,,因此,直線與平面所成角的正弦值為;(3)設(shè)平面的一個(gè)法向量為,,,由,可得,得,取,則,,所以,平面的一個(gè)法向量為,,由圖形可知,二面角為銳角,因此,二面角的余弦值為.【點(diǎn)睛】方法點(diǎn)睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過計(jì)算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.18、(1)(2)【解析】(1)以為原點(diǎn),為軸,為軸,為軸建立空間直角坐標(biāo)系,求出平面的法向量為,再利用公式計(jì)算即可;(2)易得平面的法向量為,設(shè)平面與平面的夾角為,再利用計(jì)算即可小問1詳解】解:(1)以為原點(diǎn),為軸,為軸,為軸建立空間直角坐標(biāo)系所以因?yàn)?,設(shè)平面的法向量為,則有,得,令則,所以可以取,設(shè)點(diǎn)到平面的距離為,則,所以點(diǎn)到平面的的距離的距離為;【小問2詳解】(2)因?yàn)槠矫?,取平面的法向量為設(shè)平面與平面的夾角為,所以平面與平面夾角的余弦值19、(1)(2)(3)【解析】(1)直接利用數(shù)列的遞推關(guān)系式,結(jié)合等差數(shù)列的定義,即可求得數(shù)列的通項(xiàng)公式;(2)化簡,結(jié)合裂項(xiàng)相消法求出數(shù)列的和;(3)利用分組法求得,結(jié)合,即可求得的最小值.【小問1詳解】解:因?yàn)楦黜?xiàng)都為正數(shù)的數(shù)列的前項(xiàng)和為,且滿足,當(dāng)時(shí),解得;當(dāng)時(shí),;兩式相減可得,整理得(常數(shù)),故數(shù)列是以2為首項(xiàng),2為公差的等差數(shù)列;所以.【小問2詳解】解:由,可得,所以,所以.【小問3詳解】解:由,可得,所以當(dāng)為偶數(shù)時(shí),,因?yàn)?,且為偶?shù),所以的最小值為48;當(dāng)為奇數(shù)時(shí),,不存在最小的值,故當(dāng)為48時(shí),滿足條件.20、(1)函數(shù)f(x)在區(qū)間(0,+)上單調(diào)遞減(2)①;②證明見解析【解析】(1)求導(dǎo),求解可得導(dǎo)函數(shù)恒小于等于0,即得證;(2)①分析函數(shù)的單調(diào)性,由有兩個(gè)實(shí)數(shù)根可求解;②由(1)得2lnxx?,再利用其放縮可得,由此有,問題得證.【小問1詳解】當(dāng)a=1時(shí),函數(shù)因?yàn)樗院瘮?shù)f(x)在區(qū)間(0,+)上單調(diào)遞減;【小問2詳解】(i)由已知可得方程有兩個(gè)實(shí)數(shù)根記,則.當(dāng)時(shí),,函數(shù)k(x)是增函數(shù);當(dāng)時(shí),,函數(shù)k(x)是減函數(shù),所以,故(ii)易知,當(dāng)x1時(shí),,故.由(1)可知,當(dāng)0x1時(shí),,所以2lnxx?由,得,所以因?yàn)?,所?1、(1)或(2)【解析】(1)根據(jù)已知可得圓心與半徑,再利用幾何
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代企業(yè)電力設(shè)備維護(hù)策略研究報(bào)告
- 現(xiàn)代醫(yī)療設(shè)施的智能供電系統(tǒng)設(shè)計(jì)與實(shí)施案例分析報(bào)告
- 物流自動化技術(shù)發(fā)展報(bào)告
- 2025年度茶葉品牌授權(quán)與推廣合同
- 二零二五年度網(wǎng)絡(luò)安全技術(shù)合作開發(fā)標(biāo)準(zhǔn)合同
- 二零二五年度贍養(yǎng)老人生活費(fèi)用及子女贍養(yǎng)責(zé)任合同
- 2025年度駕校入股及駕駛技能競賽組織協(xié)議
- 2025年度銀行與保險(xiǎn)公司全面風(fēng)險(xiǎn)管理與合作協(xié)議
- 二零二五年度物業(yè)服務(wù)合同關(guān)于物業(yè)服務(wù)企業(yè)考核的補(bǔ)充協(xié)議
- 2025年中國手機(jī)芯電圖儀市場調(diào)查研究報(bào)告
- 2025年1月浙江省高考政治試卷(含答案)
- 教體局校車安全管理培訓(xùn)
- 湖北省十堰市城區(qū)2024-2025學(xué)年九年級上學(xué)期期末質(zhì)量檢測綜合物理試題(含答案)
- 導(dǎo)播理論知識培訓(xùn)班課件
- 空氣能安裝合同
- 電廠檢修安全培訓(xùn)課件
- 20以內(nèi)加減法口算題(10000道)(A4直接打印-每頁100題)
- 《中小學(xué)教育懲戒規(guī)則》重點(diǎn)內(nèi)容學(xué)習(xí)PPT課件(帶內(nèi)容)
- 板帶生產(chǎn)工藝5(熱連軋帶鋼生產(chǎn))課件
- 2022年同等學(xué)力英語考試真題及詳解
- 深度配煤摻燒方案
評論
0/150
提交評論