版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆吉林省長春市第150中學高二數(shù)學第一學期期末考試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓和橢圓.直線與圓交于、兩點,與橢圓交于、兩點.若時,的取值范圍是,則橢圓的離心率為()A. B.C. D.2.下列關系中,正確的是()A. B.C. D.3.數(shù)列中,,,則()A.32 B.62C.63 D.644.金剛石的成分為純碳,是自然界中天然存在的最堅硬物質,它的結構是由8個等邊三角形組成的正八面體.若某金剛石的棱長為2,則它的體積為()A. B.C. D.5.若,則=()A.244 B.1C. D.6.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點,,則異面直線PC與BE所成角的余弦值為()A. B.C. D.7.已知直線過點,且與直線垂直,則直線的方程為()A. B.C. D.8.已知點到直線的距離為1,則m的值為()A.或 B.或15C.5或 D.5或159.在長方體中,,,分別是棱,的中點,則異面直線,的夾角為()A. B.C. D.10.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設,,則當時,n的最大值是()A.8 B.9C.10 D.1111.已知雙曲線的離心率為,左焦點為F,實軸右端點為A,虛軸上端點為B,則為()A.直角三角形 B.鈍角三角形C.等腰三角形 D.銳角三角形12.如圖,在四面體中,,分別是,的中點,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若圓的一條直徑的端點是、,則此圓的方程是_______14.在等比數(shù)列中,已知,則________15.在正方體中,二面角的大小為__________(用反三角表示)16.數(shù)列的前項和為,則_________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形為矩形,,,為的中點,與交于點,平面.(1)若,求與所成角的余弦值;(2)若,求直線與平面所成角的正弦值.18.(12分)已知滿足,.(1)求證:是等差數(shù)列,求的通項公式;(2)若,的前項和是,求證:.19.(12分)如圖,在正方體中,是棱的中點.(1)試判斷直線與平面的位置關系,并說明理由;(2)求證:直線面.20.(12分)已知四棱錐的底面是矩形,底面,且,設E、F、G分別為PC、BC、CD的中點,H為EG的中點,如圖.(1)求證:平面;(2)求直線FH與平面所成角的大小.21.(12分)設函數(shù).(1)若在點處的切線為,求a,b的值;(2)求的單調區(qū)間.22.(10分)在平面直角坐標系中,已知橢圓過點,且離心率.(1)求橢圓的方程;(2)直線的斜率為,直線l與橢圓交于兩點,求的面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題設,根據(jù)圓與橢圓的對稱性,假設在第一象限可得,結合已知有,進而求橢圓的離心率.【詳解】由題設,圓與橢圓的如下圖示:又時,的取值范圍是,結合圓與橢圓的對稱性,不妨假設在第一象限,∴從0逐漸增大至無窮大時,,故,∴故選:C.2、B【解析】根據(jù)對數(shù)函數(shù)的性質判斷A,根據(jù)指數(shù)函數(shù)的性質判斷B,根據(jù)正弦函數(shù)的性質及誘導公式判斷C,根據(jù)余弦函數(shù)的性質及誘導公式判斷D;【詳解】解:對于A:因為,,,故A錯誤;對于B:因為在定義域上單調遞減,因為,所以,又,,因為在上單調遞增,所以,所以,所以,故B正確;對于C:因為在上單調遞減,因為,所以,又,所以,故C錯誤;對于D:因為在上單調遞減,又,所以,又,所以,故D錯誤;故選:B3、C【解析】把化成,故可得為等比數(shù)列,從而得到的值.【詳解】數(shù)列中,,故,因為,故,故,所以,所以為等比數(shù)列,公比為,首項為.所以即,故,故選C.【點睛】給定數(shù)列的遞推關系,我們常需要對其做變形構建新數(shù)列(新數(shù)列的通項容易求得),常見的遞推關系和變形方法如下:(1),取倒數(shù)變形為;(2),變形為,也可以變形為;4、C【解析】由幾何關系先求出一個正四面體的高,再結合錐體體積公式即可求解正八面體的體積.【詳解】如圖,設底面中心為,連接,由幾何關系知,,則正八面體體積為.故選:C5、D【解析】分別令代入已知關系式,再兩式求和即可求解.【詳解】根據(jù),令時,整理得:令x=2時,整理得:由①+②得,,所以.故選:D.6、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點F,G,連接DF,F(xiàn)G,DG,如圖,因為E為AD的中點,四邊形ABCD是菱形,所以,所以(其補角)是異面直線PC與BE所成的角因為底面ABCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B7、A【解析】求出直線斜率,利用點斜式可得出直線的方程.【詳解】直線的斜率為,則直線的斜率為,故直線的方程為,即.故選:A.8、D【解析】利用點到直線距離公式即可得出.【詳解】解:點到直線的距離為1,解得:m=15或5故選:D.9、C【解析】設出長度,建立空間直角坐標系,根據(jù)向量求異面直線所成角即可.【詳解】如下圖所示,以,,所在直線方向,,軸,建立空間直角坐標系,設,,,,,,所以,,設異面直線,的夾角為,所以,所以,即異面直線,的夾角為.故選:C.10、B【解析】先求出數(shù)列和的通項公式,然后利用分組求和求出,再對進行賦值即可求解.【詳解】解:因為數(shù)列是以1為首項,2為公差的等差數(shù)列所以因為是以1為首項,2為公比的等比數(shù)列所以由得:當時,即當時,當時,所以n的最大值是.故選:B.【點睛】關鍵點睛:本題的關鍵是利用分組求和求出,再通過賦值法即可求出使不等式成立的的最大值.11、A【解析】根據(jù)三邊的關系即可求出【詳解】因,所以,而,,,所以,即,所以為直角三角形故選:A12、A【解析】利用向量的加法法則直接求解.【詳解】在四面體中,,分別是,的中點,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先設圓上任意一點的坐標,然后利用直徑對應的圓周角為直角,再利用向量垂直建立方程即可【詳解】設圓上任意一點的坐標為可得:,則有:,即解得:故答案為:14、2【解析】由等比數(shù)列的相關性質進行求解.【詳解】由等比數(shù)列的相關性質得:故答案為:215、【解析】作出二面角的平面角,并計算出二面角的大小.【詳解】設,畫出圖像如下圖所示,由于,所以平面,所以,所以是二面角的平面角.所以.所以二面角的大小為.故答案為:16、【解析】利用計算可得出數(shù)列的通項公式.【詳解】當時,;而不適合上式,.故答案:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)以為原點,、所在的直線為、軸,以過點垂直于面的直線為軸,建立空間直角坐標系,利用空間向量法可求得與所成角的余弦值;(2)計算出平面的法向量,利用空間向量法可求得直線與平面所成角的正弦值.【小問1詳解】解:如圖,以為原點,、所在的直線為、軸,以過點垂直于面的直線為軸,建立空間直角坐標系,,,則,則,故,因為平面,平面,則,若,則,故、、、,則,,.因此,若,則與所成角的余弦值為.【小問2詳解】解:若,則、,,,,設平面的法向量為,則,取,可得,,所以直線與平面所成角的正弦值為.18、(1)證明見解析,(2)證明見解析【解析】(1)在等式兩邊同時除以,結合等差數(shù)列的定義可證得數(shù)列為等差數(shù)列,確定該數(shù)列的首項和公差,可求得的表達式;(2)求得,利用裂項相消法求得,即可證得原不等式成立.【小問1詳解】解:在等式兩邊同時除以可得且,所以,數(shù)列是以為首項,以為公差的等差數(shù)列,則,因此,.【小問2詳解】證明:,所以,.故原不等式得證.19、(1)平面AEC,理由見解析(2)證明見解析【解析】(1)以線面平行的判定定理去證明直線與平面平行即可;(2)以線面垂直的判定定理去證明直線面即可.【小問1詳解】連接BD,設,連接OE.在中,O、E分別是BD、的中點,則.因為直線OE在平面AEC上,而直線不在平面AEC上,根據(jù)直線與平面平行的判定定理,得到直線平面AEC.【小問2詳解】正方體中,故,又,故同理故,又,故又根據(jù)直線與平面垂直的判定定理,得直線平面.20、(1)證明見解析(2)【解析】(1)連接CH,延長交PD于點K,連接BK,根據(jù)E、F、G分別為PC、BC、CD的中點,易得,再利用線面平行的判定定理證明.(2)建立空間直角坐標,求得的坐標,平面PBC一個法向量,代入公式求解.【詳解】(1)如圖所示:連接CH,延長交PD于點K,連接BK,因為設E、F、G分別為PC、BC、CD的中點,所以H為CK的中點,所以,又平面平面,所以平面;(2)建立如圖所示直角坐標系則,所以,設平面PBC一個法向量為:,則,有,令,,設直線FH與平面所成角為,所以,因為,所以.【點睛】本題主要考查線面平行的判定定理,線面角的向量求法,還考查了轉化化歸的思想和邏輯推理,運算求解的能力,屬于中檔題.21、(1),;(2)答案見解析.【解析】(1)已知切線求方程參數(shù),第一步求導,切點在曲線,切點在切線,切點處的導數(shù)值為切線斜率.(2)第一步定義域,第二步求導,第三步令導數(shù)大于或小于0,求解析,即可得到答案.【小問1詳解】的定義域為,,因為在點處的切線為,所以,所以;所以把點代入得:.即a,b的值為:,.【小問2詳解】由(1)知:.①當時,在上恒成立,所以在單調遞減;②當時,令,解得:,列表得:x-0+單調遞減極小值單調遞增所以,時,的遞減區(qū)間為,單增區(qū)間為.綜上所述:當時,在單調遞減;當時,的遞減區(qū)間為,單增區(qū)間為.【點睛】導函數(shù)中得切線問題第一步求導,第二步列切點在曲線,切點在切線,切點處的導數(shù)值為切線斜率這三個方程,可解切線相關問題.22、(1);(2)2.【解析】(1)由離心率,得到,再由點在橢圓上,得到,聯(lián)立求得,即可求得橢圓的方程.(2)設的方程為,聯(lián)立方程組,根據(jù)根系數(shù)的關系和弦長公式,以及點到直線的距離公式,求得,結合基本不等式,即可求解.【詳解】(1)由題意,橢圓的離心率,即,可得,又橢圓過點,可得,將代
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 關于技術服務協(xié)議的報告
- 頸部壞死性筋膜炎病因介紹
- 個人調解協(xié)議
- 面部長毛病因介紹
- 藥物性脫發(fā)病因介紹
- 自身敏感性皮炎病因介紹
- 全國賽課一等獎初中統(tǒng)編版七年級道德與法治上冊《增強安全意識》教學課件
- (案例)鑿巖鉆機項目立項報告
- 2023年工控裝備:溫度控制調節(jié)器項目融資計劃書
- 《KAB創(chuàng)業(yè)俱樂部》課件
- 天然氣長輸管道安全事故應急演練腳本
- 四年級上冊生命生態(tài)安全期末復習資料
- 電機端蓋的機械加工工藝工裝設計畢業(yè)論文
- 2023年1月內蒙古自治區(qū)普通高中學業(yè)水平考試數(shù)學試題
- 手術講解模板臀位外倒轉術
- 訂單評審記錄表
- 《鳳凰大視野》經典人文紀錄片合集
- Q∕SY 201.2-2015 油氣管道監(jiān)控與數(shù)據(jù)采集系統(tǒng)通用技術規(guī)范 第2部分:系統(tǒng)安全
- 精神科出科考試試題及答案
- 外研版四年級上冊英語(全冊)單元教材分析
- 網(wǎng)絡安全等級保護之信息系統(tǒng)定級備案工作方案
評論
0/150
提交評論