2024屆廣東省廣雅中學、執(zhí)信、六中、深外四校高二上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第1頁
2024屆廣東省廣雅中學、執(zhí)信、六中、深外四校高二上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第2頁
2024屆廣東省廣雅中學、執(zhí)信、六中、深外四校高二上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第3頁
2024屆廣東省廣雅中學、執(zhí)信、六中、深外四校高二上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第4頁
2024屆廣東省廣雅中學、執(zhí)信、六中、深外四校高二上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省廣雅中學、執(zhí)信、六中、深外四校高二上數(shù)學期末質量跟蹤監(jiān)視試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,,則下列不等關系正確的是()A. B.C. D.2.在公比為的等比數(shù)列中,前項和,則()A.1 B.2C.3 D.43.雙曲線:(,)的左、右焦點分別為、,點在雙曲線上,,,則的離心率為()A. B.2C. D.4.的二項展開式中,二項式系數(shù)最大的項是第()項.A.6 B.5C.4和6 D.5和75.已知橢圓的長軸長是短軸長的倍,左焦點、右頂點和下頂點分別為,坐標原點到直線的距離為,則的面積為()A. B.4C. D.6.如圖為某幾何體的三視圖,則該幾何體中最大的側面積是()A.B.C.D.7.某學校高二級選擇“史政地”“史政生”和“史地生”組合的同學人數(shù)分別為240,120和60.現(xiàn)采用分層抽樣的方法選出14位同學進行一項調查研究,則“史政生”組合中選出的人數(shù)為()A.8 B.6C.4 D.38.等差數(shù)列的通項公式,數(shù)列,其前項和為,則等于()A. B.C. D.9.正四棱錐中,,則直線與平面所成角的正弦值為A. B.C. D.10.若“”是“”的充分不必要條件,則實數(shù)a的取值范圍為A. B.或C. D.11.已知直線與圓相切,則的值是()A. B.C. D.12.實數(shù)且,,則連接,兩點的直線與圓C:的位置關系是()A.相離 B.相切C.相交 D.不能確定二、填空題:本題共4小題,每小題5分,共20分。13.狄利克雷是十九世紀德國杰出的數(shù)學家,對數(shù)論、數(shù)學分析和數(shù)學物理有突出貢獻.狄利克雷曾提出了“狄利克雷函數(shù)”.若,根據(jù)“狄利克雷函數(shù)”可求___________.14.用組成所有沒有重復數(shù)字的五位數(shù)中,滿足與相鄰并且與不相鄰的五位數(shù)共有____________個.(結果用數(shù)值表示)15.已知曲線在點處的切線方程是,則的值為______16.已知向量,,,若,則____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)等差數(shù)列的前項和記為,已知.(1)求的通項公式:(2)求,并求為何值時的值最大.18.(12分)求下列函數(shù)導數(shù):(1);(2);19.(12分)已知橢圓的左、右焦點分別為,若焦距為4,點P是橢圓上與左、右頂點不重合的點,且的面積最大值.(1)求橢圓的方程;(2)過點的直線交橢圓于點、,且滿足(為坐標原點),求直線的方程.20.(12分)已知圓C的圓心在直線上,且圓C經(jīng)過,兩點.(1)求圓C的標準方程.(2)設直線與圓C交于A,B(異于坐標原點O)兩點,若以AB為直徑的圓過原點,試問直線l是否過定點?若是,求出定點坐標;若否,請說明理由.21.(12分)已知直線:,直線:(1)若,之間的距離為3,求c的值:(2)求直線截圓C:所得弦長22.(10分)設四邊形為矩形,點為平面外一點,且平面,若,.(1)求與平面所成角的大小;(2)在邊上是否存在一點,使得點到平面的距離為,若存在,求出的值,若不存在,請說明理由;(3)若點是的中點,在內確定一點,使的值最小,并求此時的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】不等式性質相關的題型,可以通過舉反例的方式判斷正誤.【詳解】若、均為負數(shù),因為,則,故A錯.若、,則,故B錯.由不等式的性質可知,因為,所以,故C對.若,因為,所以,故D錯.故選:C.2、C【解析】先利用和的關系求出和,再求其公比.【詳解】由,得,,所以,,則.故選:C.3、C【解析】根據(jù)雙曲線定義、余弦定理,結合題意,求得關系,即可求得離心率.【詳解】根據(jù)題意,作圖如下:不妨設,則,,①;在△中,由余弦定理可得:,代值得:,②;聯(lián)立①②兩式可得:;在△和△中,由,可得:,整理得:,③;聯(lián)立②③可得:,又,故可得:,則,則,故離心率為.故選:C.4、A【解析】由二項展開的中間項或中間兩項二項式系數(shù)最大可得解.【詳解】因為二項式展開式一共11項,其中中間項的二項式系數(shù)最大,易知當r=5時,最大,即二項展開式中,二項式系數(shù)最大的為第6項.故選:A5、C【解析】設,根據(jù)題意,可知的方程為直線,根據(jù)原點到直線的距離建立方程,求出,進而求出,的值,以及到直線的距離,再根據(jù)面積公式,即可求出結果.【詳解】設,由題意可知,其中,所以的方程為,即所以原點到直線的距離為,所以,即,;所以直線的方程為,所以到直線的距離為;又,所以的面積為.故選:C.6、B【解析】由三視圖還原原幾何體,確定幾何體的結構,計算各面面積可得【詳解】由三視圖,原幾何體是三棱錐,平面,,尺寸見三視圖,,,故選:B7、C【解析】根據(jù)題意求得抽樣比,再求“史政生”組合中抽取的人數(shù)即可.【詳解】根據(jù)題意,分層抽樣的抽樣比為,故從“史政生”組合120中,抽取的人數(shù)時人.故選:.8、D【解析】根據(jù)裂項求和法求得,再計算即可.【詳解】解:由題意得====所以.故選:D9、C【解析】建立合適的空間直角坐標系,求出和平面的法向量,直線與平面所成角的正弦值即為與的夾角的余弦值的絕對值,利用夾角公式求出即可.【詳解】建立如圖所示的空間直角坐標系.有圖知,由題得、、、.,,.設平面的一個法向量,則,,令,得,,.設直線與平面所成的角為,則.故選:C.【點睛】本題考查線面角的求解,利用向量法可簡化分析過程,直接用計算的方式解決問題,是基礎題.10、D【解析】“”是“”的充分不必要條件,結合集合的包含關系,即可求出的取值范圍.【詳解】∵“”是“”的充分不必要條件∴或∴故選:D.【點睛】本題考查充分必要條件,根據(jù)充要條件求解參數(shù)的范圍時,可把充分條件、必要條件或充要條件轉化為集合間的關系,由此得到不等式(組)后再求范圍.解題時要注意,在利用兩個集合之間的關系求解參數(shù)的取值范圍時,不等式是否能夠取等號決定端點值的取舍,處理不當容易出現(xiàn)漏解或增解的現(xiàn)象.11、D【解析】直線與圓相切,直接通過求解即可.【詳解】因為直線與圓相切,所以圓心到直線的距離,所以,.故選:D12、B【解析】由題意知,m,n是方程的根,再根據(jù)兩點式求出直線方程,利用圓心到直線的距離與半徑之間的關系即可求解.【詳解】由題意知,m,n是方程的根,,,過,兩點的直線方程為:,圓心到直線的距離為:,故直線和圓相切,故選:B【點睛】本題考查了直線與圓的位置關系,考查了計算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】由“狄利克雷函數(shù)”解析式,先求出,再根據(jù)指數(shù)函數(shù)的解析式求即可.【詳解】由題設,,則.故答案:114、【解析】由題意,先利用捆綁法排列和,再利用插空法排列和,即可得答案.【詳解】因為滿足與相鄰并且與不相鄰,則將捆綁,內部排序得,再對和全排列得,利用插空法將和插空得,所以滿足題意得五位數(shù)有.故答案為:15、11【解析】根據(jù)給定條件結合導數(shù)的幾何意義直接計算作答.【詳解】因曲線在點處的切線方程是,則,,所以.故答案為:1116、【解析】首先求出的坐標,再根據(jù)向量垂直得到,即可得到方程,解得即可;【詳解】解:因為向量,,,所以向量,因為,所以,即,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)當或時,的值最大.【解析】(1)根據(jù)等差數(shù)列前項和公式,結合等差數(shù)列的通項公式進行求解即可;(2)根據(jù)等差數(shù)列的性質進行求解即可.【小問1詳解】設等差數(shù)列的公差為,因為,所以有,即;【小問2詳解】由(1)可知,所以該數(shù)列是遞減數(shù)列,而,當時,解得:,因此當或時,的值最大.18、(1);(2)【解析】根據(jù)基本初等函數(shù)的導數(shù)公式以及導數(shù)的運算法則計算可得;【詳解】解:(1)因為所以,即(2)因為所以,即19、(1)(2)或【解析】(1)根據(jù)焦距求出,利用面積最大值,得到求出,從而得到,求出橢圓方程;(2)分直線斜率存在和斜率不存在,結合題干條件得到,進而求出直線方程.【小問1詳解】∵∴,又的面積最大值,則,所以,從而,,故橢圓的方程為:;【小問2詳解】①當直線的斜率存在時,設,代入③整理得,設、,則,所以,點到直線的距離因為,即,又由,得,所以,.而,,即,解得:,此時;②當直線的斜率不存在時,,直線交橢圓于點、.也有,經(jīng)檢驗,上述直線均滿足,綜上:直線的方程為或.【點睛】圓錐曲線中,有關向量的題目,要結合條件選擇不同的方法,一般思路有轉化為三角形面積,或者線段的比,或者由向量得到共線等.20、(1)(2)過定點,定點為【解析】(1)設出圓C的標準方程,由題意列出方程從而可得答案.(2)設,,將直線的方程與圓C的方程聯(lián)立,得出韋達定理,由條件可得,從而得出答案.【小問1詳解】設圓C的標準方程為由題意可得解得,,.故圓C的標準方程為.【小問2詳解】設,.聯(lián)立整理的,則,,故.因為以AB為直徑的圓過原點,所以,即則,化簡得.當時,直線,直線l過原點,此時不滿足以AB為直徑的圓過原點.所以,則,則直線過定點.21、(1)或(2)【解析】(1)根據(jù)兩條平行直線的距離公式列方程,化簡求得的值.(2)利用弦長公式求得.【小問1詳解】因為兩條平行直線:與:間的距離為3,所以解得或.【小問2詳解】圓C:,圓心為,半徑為.圓心到直線的距離為,所以弦長22、(1)(2)存在,距離為(3)位置答案見解析,【解析】(1)利用線面垂直的判定定理證明平面,然后由線面角的定義得到PC與平面PAD所成的角為,在中,由邊角關系求解即可.(2)假設BC邊上存在一點G滿足題設條件,不放設,則,再根據(jù)得,進而得答案.(3)延長CB到C',使得C'B=CB,連結C'E,過E作于E',利用三點共線,兩線段和最小,得到,過H作于H',連結HB,在中,求解HB即可.【小問1詳解】解:因

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論