最全機(jī)械制圖-畫法幾何-零件圖-組合體-尺寸標(biāo)注-換面法課件_第1頁
最全機(jī)械制圖-畫法幾何-零件圖-組合體-尺寸標(biāo)注-換面法課件_第2頁
最全機(jī)械制圖-畫法幾何-零件圖-組合體-尺寸標(biāo)注-換面法課件_第3頁
最全機(jī)械制圖-畫法幾何-零件圖-組合體-尺寸標(biāo)注-換面法課件_第4頁
最全機(jī)械制圖-畫法幾何-零件圖-組合體-尺寸標(biāo)注-換面法課件_第5頁
已閱讀5頁,還剩171頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

機(jī)械制圖教學(xué)課件最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法機(jī)械制圖第五章機(jī)件的表達(dá)方法第六章標(biāo)準(zhǔn)件和常用件第四章軸側(cè)圖第七章零件圖第三章組合體第八章裝配圖第二章正投影基礎(chǔ)結(jié)束機(jī)械制圖最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法2.1投影的形成及常用的投影方法2.2點、線、面的投影2.3幾何元素的相對位置2.4換面法2.5體的投影及三視圖2.6平面體與回轉(zhuǎn)體的截切2.7兩立體相交正投影基礎(chǔ)返回最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法2.2.1點的投影2.2.2直線的投影2.2.3平面的投影點線面返回最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法2.6.1平面立體的截切2.6.2回轉(zhuǎn)體體的截切截切返回最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法3.1組合體的組成方式3.2組合體的畫圖方法3.3組合體的看圖方法3.4組合體的尺寸標(biāo)注組合體返回最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法4.1軸側(cè)圖的基本知識4.2正等軸側(cè)圖4.3斜二軸側(cè)圖4.4軸側(cè)圖中剖切畫法軸側(cè)圖返回最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法5.1視圖5.2剖視圖5.3剖面圖5.4簡化畫法機(jī)件表達(dá)方法返回最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法6.1螺紋和螺紋緊固件6.2齒輪6.3鍵與銷6.4彈簧6.5滾動軸承標(biāo)準(zhǔn)件常用件返回最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法7.1零件圖的作用與內(nèi)容7.2零件圖的視圖選擇7.3零件結(jié)構(gòu)工藝性7.4零件圖的尺寸標(biāo)注與工藝性7.5畫零件圖的步驟與方法7.6零件圖的看圖方法與步驟7.7零件圖的技術(shù)要求零件圖返回最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法8.4裝配圖的尺寸標(biāo)注零件編號和明細(xì)表8.3裝配圖的視圖選擇8.2裝配圖的表達(dá)方法8.1裝配圖的作用與內(nèi)容8.5裝配結(jié)構(gòu)的合理性8.6畫裝配圖的方法和步驟8.7裝配圖的讀圖和拆畫零件圖裝配圖返回最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法2·1投影的形成及常用的投影方法投影方法中心投影法平行投影法直角投影法(正投影法)斜角投影法畫透視圖畫斜軸測圖畫工程圖樣及正軸測圖返回下頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法中心投影法投射中心、物體、投影面三者之間的相對距離對投影的大小有影響。度量性較差投影特性投射線投射中心物體投影面投影物體位置改變,投影大小也改變返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法平行投影法斜角投影法投影特性投影大小與物體和投影面之間的距離無關(guān)。度量性較好工程圖樣多數(shù)采用正投影法繪制。投射線互相平行且垂直于投影面投射線互相平行且傾斜于投影面直角(正)投影法返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法

Pb

●●AP采用多面投影。過空間點A的投射線與投影面P的交點即為點A在P面上的投影。B1●B2●B3●點在一個投影面上的投影不能確定點的空間位置。一、點在一個投影面上的投影a

●2.2.1點的投影解決辦法?返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法HWV二、點的三面投影投影面◆正面投影面(簡稱正面或V面)◆水平投影面(簡稱水平面或H面)◆側(cè)面投影面(簡稱側(cè)面或W面)投影軸oXZOX軸V面與H面的交線OZ軸V面與W面的交線OY軸H面與W面的交線Y三個投影面互相垂直返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法WHVoX空間點A在三個投影面上的投影a

點A的正面投影a點A的水平投影a

點A的側(cè)面投影空間點用大寫字母表示,點的投影用小寫字母表示。a

●a●a

●A●ZY返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法WVH●●●●XYZOVHWAaa

a

xaazay向右翻向下翻不動投影面展開aaZaa

yayaXYYO

●●az●x返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法●●●●XYZOVHWAaa

a

點的投影規(guī)律:①a

a⊥OX軸②aax=a

az=y=A到V面的距離a

ax=a

ay=z=A到H面的距離aay=a

az=x=A到W面的距離xaazay●●YZaza

XYayOaaxaya

a

a

⊥OZ軸返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法●●a

aax例:已知點的兩個投影,求第三投影?!馻

●●a

aaxazaz解法一:通過作45°線使a

az=aax解法二:用圓規(guī)直接量取a

az=aaxa

●返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法三、兩點的相對位置

兩點的相對位置指兩點在空間的上下、前后、左右位置關(guān)系。判斷方法:▲x坐標(biāo)大的在左

▲y坐標(biāo)大的在前▲

z坐標(biāo)大的在上b

aa

a

b

b●●●●●●B點在A點之前、之右、之下。XYHYWZ返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法四、重影點:空間兩點在某一投影面上的投影重合為一點時,則稱此兩點為該投影面的重影點。A、C為H面的重影點●●●●●a

a

c

c

被擋住的投影加()()A、C為哪個投影面的重影點呢?ac返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法aa

a

b

b

b●●●●●●2.2.2直線的投影兩點確定一條直線,將兩點的同名投影用直線連接,就得到直線的同名投影。⒈直線對一個投影面的投影特性一、直線的投影特性AB●●●●ab直線垂直于投影面投影重合為一點積聚性直線平行于投影面投影反映線段實長

ab=AB直線傾斜于投影面投影比空間線段短

ab=ABcosα●●AB●●abαAMB●a≡b≡m●●●返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法⒉直線在三個投影面中的投影特性投影面平行線平行于某一投影面而與其余兩投影面傾斜投影面垂直線正平線(平行于V面)側(cè)平線(平行于W面)水平線(平行于H面)正垂線(垂直于V面)側(cè)垂線(垂直于W面)鉛垂線(垂直于H面)一般位置直線與三個投影面都傾斜的直線統(tǒng)稱特殊位置直線垂直于某一投影面返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法b

a

aba

b

b

aa

b

ba

⑴投影面平行線①在其平行的那個投影面上的投影反映實長,并反映直線與另兩投影面傾角的實大。②另兩個投影面上的投影平行于相應(yīng)的投影軸。水平線側(cè)平線正平線γ投影特性:與H面的夾角:α與V面的角:β與W面的夾角:γ實長實長實長βγααβba

aa

b

b

返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法反映線段實長。且垂直于相應(yīng)的投影軸。⑵投影面垂直線鉛垂線正垂線側(cè)垂線②另外兩個投影,①在其垂直的投影面上,投影有積聚性。投影特性:●c

(d

)cdd

c

●a

b

a(b)a

b

●e

f

efe

(f

)返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法⑶一般位置直線投影特性:三個投影都縮短。即:都不反映空間線段的實長及與三個投影面夾角的實大,且與三根投影軸都傾斜。abb

a

b

a

返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法二、直線與點的相對位置◆若點在直線上,則點的投影必在直線的同名投影上。并將線段的同名投影分割成與空間相同的比例。即:

◆若點的投影有一個不在直線的同名投影上,則該點必不在此直線上。判別方法:AC/CB=ac/cb=a

c

/c

b

ABCVHbcc

b

a

a定比定理返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法點C不在直線AB上例1:判斷點C是否在線段AB上。abca

b

c

①c

②abca

b

●點C在直線AB上返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例2:判斷點K是否在線段AB上。a

b

●k

因k

不在a

b

上,故點K不在AB上。應(yīng)用定比定理abka

b

k

●●另一判斷法?返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法三、兩直線的相對位置空間兩直線的相對位置分為:平行、相交、交叉。⒈兩直線平行投影特性:空間兩直線平行,則其各同名投影必相互平行,反之亦然。aVHc

bcdABCDb

d

a

返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法abcdc

a

b

d

例1:判斷圖中兩條直線是否平行。對于一般位置直線,只要有兩個同名投影互相平行,空間兩直線就平行。AB//CD①返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法b

d

c

a

cbadd

b

a

c

對于特殊位置直線,只有兩個同名投影互相平行,空間直線不一定平行。求出側(cè)面投影后可知:AB與CD不平行。例2:判斷圖中兩條直線是否平行。②求出側(cè)面投影如何判斷?返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法HVABCDKabcdka

b

c

k

d

abcdb

a

c

d

kk

⒉兩直線相交判別方法:若空間兩直線相交,則其同名投影必相交,且交點的投影必符合空間一點的投影規(guī)律。交點是兩直線的共有點返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法●●cabb

a

c

d

k

kd例:過C點作水平線CD與AB相交。先作正面投影返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法d

b

a

abcdc

1

(2

)3(4)⒊兩直線交叉投影特性:★同名投影可能相交,但“交點”不符合空間一個點的投影規(guī)律?!铩敖稽c”是兩直線上的一對重影點的投影,用其可幫助判斷兩直線的空間位置?!瘛瘼瘛ⅱ蚴牵置娴闹赜包c,Ⅲ、Ⅳ是H面的重影點。為什么?12●●3

4

●●兩直線相交嗎?返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法⒋兩直線垂直相交(或垂直交叉)直角的投影特性:若直角有一邊平行于投影面,則它在該投影面上的投影仍為直角。設(shè)直角邊BC//H面因BC⊥AB,同時BC⊥Bb所以BC⊥ABba平面直線在H面上的投影互相垂直即∠abc為直角因此bc⊥ab故bc⊥ABba平面又因BC∥bcABCabcHa

c

b

abc.證明:返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法d

abca

b

c

●●d例:過C點作直線與AB垂直相交。AB為正平線,正面投影反映直角。.返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法

小結(jié)

★點與直線的投影特性,尤其是特殊位置直線的投影特性?!稂c與直線及兩直線的相對位置的判斷方法及投影特性?!锒ū榷ɡ??!镏苯嵌ɡ恚磧芍本€垂直時的投影特性。重點掌握:返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法一、點的投影規(guī)律aaZayayaXYYO

●●●xa

za①a

a⊥OX軸②aax=a

az=y=A到V面的距離a

ax=a

ay=z=A到H面的距離aay=a

az=x=A到W面的距離

a

a

⊥OZ軸返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法二、各種位置直線的投影特性⒈一般位置直線三個投影與各投影軸都傾斜。⒉投影面平行線在其平行的投影面上的投影反映線段實長及與相應(yīng)投影面的夾角。另兩個投影平行于相應(yīng)的投影軸。⒊投影面垂直線在其垂直的投影面上的投影積聚為一點。另兩個投影反映實長且垂直于相應(yīng)的投影軸。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法三、直線上的點⒈點的投影在直線的同名投影上。⒉點分線段成定比,點的投影必分線段的投影成定比——定比定理。四、兩直線的相對位置⒈平行⒉相交⒊交叉(異面)同名投影互相平行。同名投影相交,交點是兩直線的共有點,且符合空間一個點的投影規(guī)律。同名投影可能相交,但“交點”不符合空間一個點的投影規(guī)律。“交點”是兩直線上一對重影點的投影。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法五、相互垂直的兩直線的投影特性⒈兩直線同時平行于某一投影面時,在該投影面上的投影反映直角。⒉兩直線中有一條平行于某一投影面時,在該投影面上的投影反映直角。⒊兩直線均為一般位置直線時,在三個投影面上的投影都不反映直角。直角定理返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法2.2.3平面的投影一、平面的表示法●●●●●●abca

b

c

不在同一直線上的三個點●●●●●●abca

b

c

直線及線外一點abca

b

c

●●●●●●d●d

●兩平行直線abca

b

c

●●●●●●兩相交直線●●●●●●abca

b

c

平面圖形返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法二、平面的投影特性平行垂直傾斜投影特性★平面平行投影面-----投影就把實形現(xiàn)★

平面垂直投影面-----投影積聚成直線

★平面傾斜投影面-----投影類似原平面實形性類似性積聚性⒈平面對一個投影面的投影特性返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法⒉平面在三投影面體系中的投影特性平面對于三投影面的位置可分為三類:投影面垂直面投影面平行面一般位置平面特殊位置平面垂直于某一投影面,傾斜于另兩個投影面平行于某一投影面,垂直于另兩個投影面與三個投影面都傾斜正垂面?zhèn)却姑驺U垂面正平面?zhèn)绕矫嫠矫娣祷叵马撋享撟钊珯C(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法abca

c

b

c

b

a

⒈投影面垂直面類似性類似性積聚性鉛垂面投影特性:在它垂直的投影面上的投影積聚成直線。該直線與投影軸的夾角反映空間平面與另外兩投影面夾角的大小。另外兩個投影面上的投影有類似性。為什么?γβ是什么位置的平面?返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法a

b

c

a

b

c

abc⒉投影面平行面積聚性積聚性實形性水平面投影特性:在它所平行的投影面上的投影反映實形。另兩個投影面上的投影分別積聚成與相應(yīng)的投影軸平行的直線。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法a

b

c

a

c

b

abc⒊一般位置平面三個投影都類似。投影特性:返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法三、平面上的直線和點判斷直線在平面內(nèi)的方法

定理一若一直線過平面上的兩點,則此直線必在該平面內(nèi)。定理二若一直線過平面上的一點,且平行于該平面上的另一直線,則此直線在該平面內(nèi)。⒈平面上取任意直線返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法abcb

c

a

abcb

c

a

d

mnn

m

d例1:已知平面由直線AB、AC所確定,試在平面內(nèi)任作一條直線。解法一解法二根據(jù)定理二根據(jù)定理一有多少解?有無數(shù)解。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例2:在平面ABC內(nèi)作一條水平線,使其到

H面的距離為10mm。n

m

nm10c

a

b

cab唯一解!有多少解?返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法⒉平面上取點先找出過此點而又在平面內(nèi)的一條直線作為輔助線,然后再在該直線上確定點的位置。例1:已知K點在平面ABC上,求K點的水平投影。b①acc

a

k

b

●k●

面上取點的方法:首先面上取線②●abca

b

k

c

d

k●d利用平面的積聚性求解通過在面內(nèi)作輔助線求解返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法bckada

d

b

c

ada

d

b

c

k

bc例2:已知AC為正平線,補(bǔ)全平行四邊形

ABCD的水平投影。解法一解法二返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法2.3幾何元素的相對位置相對位置包括平行、相交和垂直。一、平行問題

直線與平面平行平面與平面平行包括⒈直線與平面平行定理:若一直線平行于平面上的某一直線,則該直線與此平面必相互平行。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法n

●●a

c

b

m

abcmn例1:過M點作直線MN平行于平面ABC。有無數(shù)解有多少解?返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法正平線例2:過M點作直線MN平行于V面和平面

ABC。c

●●b

a

m

abcmn唯一解n

返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法⒉兩平面平行①若一平面上的兩相交直線對應(yīng)平行于另一平面上的兩相交直線,則這兩平面相互平行。②若兩投影面垂直面相互平行,則它們具有積聚性的那組投影必相互平行。f

h

abcdefha

b

c

d

e

c

f

b

d

e

a

abcdef返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法二、相交問題直線與平面相交平面與平面相交⒈直線與平面相交直線與平面相交,其交點是直線與平面的共有點。要討論的問題:●求直線與平面的交點。

●判別兩者之間的相互遮擋關(guān)系,即判別可見性。我們只討論直線與平面中至少有一個處于特殊位置的情況。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法abcmnc

n

b

a

m

⑴平面為特殊位置例:求直線MN與平面ABC的交點K并判別可見性??臻g及投影分析平面ABC是一鉛垂面,其水平投影積聚成一條直線,該直線與mn的交點即為K點的水平投影。①求交點②判別可見性由水平投影可知,KN段在平面前,故正面投影上k

n

為可見。還可通過重影點判別可見性。k

●1

(2

)作圖k●●2●1●返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法km(n)b●m

n

c

b

a

ac⑵直線為特殊位置空間及投影分析直線MN為鉛垂線,其水平投影積聚成一個點,故交點K的水平投影也積聚在該點上。①求交點②判別可見性點Ⅰ位于平面上,在前;點Ⅱ位于MN上,在后。故k

2

為不可見。1

(2

)k

●2●1●●作圖用面上取點法返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法⒉兩平面相交兩平面相交其交線為直線,交線是兩平面的共有線,同時交線上的點都是兩平面的共有點。要討論的問題:①求兩平面的交線方法:⑴確定兩平面的兩個共有點。⑵確定一個共有點及交線的方向。只討論兩平面中至少有一個處于特殊位置的情況。②判別兩平面之間的相互遮擋關(guān)系,即:

判別可見性。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法可通過正面投影直觀地進(jìn)行判別。abcdefc

f

d

b

e

a

m

(n

)空間及投影分析平面ABC與DEF都為正垂面,它們的正面投影都積聚成直線。交線必為一條正垂線,只要求得交線上的一個點便可作出交線的投影。①求交線②判別可見性作圖從正面投影上可看出,在交線左側(cè),平面ABC在上,其水平投影可見。n●m●●能否不用重影點判別?能!如何判別?例:求兩平面的交線MN并判別可見性。⑴返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法b

c

f

h

a

e

abcefh1(2)空間及投影分析平面EFH是一水平面,它的正面投影有積聚性。a

b

與e

f

的交點m

、b

c

與f

h

的交點n

即為兩個共有點的正面投影,故m

n

即MN的正面投影。①求交線②判別可見性點Ⅰ在FH上,點Ⅱ在BC上,點Ⅰ在上,點Ⅱ在下,故fh可見,n2不可見。作圖m●●n

●2

●n●m

●1

●⑵返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法c

d

e

f

a

b

abcdef⑶投影分析

N點的水平投影n位于Δdef的外面,說明點N位于ΔDEF所確定的平面內(nèi),但不位于ΔDEF這個圖形內(nèi)。所以ΔABC和ΔDEF的交線應(yīng)為MK。n●n

●m

●k●m●k

●互交返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法

小結(jié)重點掌握:二、如何在平面上確定直線和點。三、兩平面平行的條件一定是分別位于兩平面內(nèi)的兩組相交直線對應(yīng)平行。四、直線與平面的交點及平面與平面的交線是兩者的共有點或共有線。解題思路:★空間及投影分析目的是找出交點或交線的已知投影?!锱袆e可見性尤其是如何利用重影點判別。一、平面的投影特性,尤其是特殊位置平面的投影特性。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法要點一、各種位置平面的投影特性⒈一般位置平面⒉投影面垂直面⒊投影面平行面三個投影為邊數(shù)相等的類似多邊形——類似性。在其垂直的投影面上的投影積聚成直線

——積聚性。另外兩個投影類似。在其平行的投影面上的投影反映實形

——實形性。另外兩個投影積聚為直線。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法二、平面上的點與直線⒈平面上的點一定位于平面內(nèi)的某條直線上⒉平面上的直線⑴過平面上的兩個點。⑵過平面上的一點并平行于該平面上的某條直線。三、平行問題⒈直線與平面平行直線平行于平面內(nèi)的一條直線。⒉兩平面平行必須是一個平面上的一對相交直線對應(yīng)平行于另一個平面上的一對相交直線。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法四、相交問題⒈求直線與平面的交點的方法⑴一般位置直線與特殊位置平面求交點,利用交點的共有性和平面的積聚性直接求解。⑵投影面垂直線與一般位置平面求交點,利用交點的共有性和直線的積聚性,采取平面上取點的方法求解。⒉求兩平面的交線的方法⑴兩特殊位置平面相交,分析交線的空間位置,有時可找出兩平面的一個共有點,根據(jù)交線的投影特性畫出交線的投影。⑵一般位置平面與特殊位置平面相交,可利用特殊位置平面的積聚性找出兩平面的兩個共有點,求出交線。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法2.4換面法一、問題的提出★如何求一般位置直線的實長?★如何求一般位置平面的真實大小?

換面法:物體本身在空間的位置不動,而用某一新投影面(輔助投影面)代替原有投影面,使物體相對新的投影面處于解題所需要的有利位置,然后將物體向新投影面進(jìn)行投射。解決方法:更換投影面。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法VHAB

a

b

ab二、新投影面的選擇原則1.新投影面必須對空間物體處于最有利的解題位置。

平行于新的投影面

垂直于新的投影面2.新投影面必須垂直于某一保留的原投影面,以構(gòu)成一個相互垂直的兩投影面的新體系。Pa'1b'1返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法VHA

a

a

axX

⒈更換一次投影面

舊投影體系X—VH

新投影體系P1HX1—A點的兩個投影:a,a

A點的兩個投影:a,a'1⑴新投影體系的建立三、點的投影變換規(guī)律X1P1a'1ax1

VHXP1HX1

a

aa'1

axax1.返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法ax1

VHXP1HX1

a

aa'1VHA

a

axXX1P1a'1ax1

⑵新舊投影之間的關(guān)系

aa'1

X1

a'1ax1=a

ax

點的新投影到新投影軸的距離等于被代替的投影到原投影軸的距離。axa

一般規(guī)律:

點的新投影和與它有關(guān)的原投影的連線,必垂直于新投影軸。.返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法

XVHaa

ax更換H面⑶求新投影的作圖方法

VHXP1HX1由點的不變投影向新投影軸作垂線,并在垂線上量取一段距離,使這段距離等于被代替的投影到原投影軸的距離。aa

X1P1V

a1axax1ax1更換V面●a'1作圖規(guī)律:

..返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法⒉更換兩次投影面先把V面換成平面P1,P1H,得到中間新投影體系:P1HX1—再把H面換成平面P2,P2

P1,得到新投影體系:

X2—P1

P2⑴新投影體系的建立按次序更換AaVH

a

axXX1P1a'1ax1

P2X2

ax2a2

返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法ax2

a

aXVH

⑵求新投影的作圖方法

a2X1HP1X2P1P2

作圖規(guī)律

a2a'1X2軸

a2ax2=aax1a'1

axax1

..返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法VHAB

a

b

ab四、換面法的四個基本問題1.把一般位置直線變換成投影面平行線用P1面代替V面,在P1/H投影體系中,AB//P1。X1HP1P1a'1b'1空間分析:

換H面行嗎?不行!作圖:例:求直線AB的實長及與H面的夾角。

a

b

abXVH新投影軸的位置?a'1●b'1●與ab平行。

.返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法a'1●b'1●VH

a

aXB

b

bA2.把一般位置直線變換成投影面垂直線空間分析:a

b

abXVHX1H1P1P1P2X2作圖:X1P1a'1b'1X2P2二次換面把投影面平行線變成投影面垂直線。X2軸的位置?

a2b2ax2a2b2

.與a'1b'1垂直一次換面把直線變成投影面平行線;返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法一般位置直線變換成投影面垂直線,需經(jīng)幾次變換?

a

b

c

abcdVHABCDX

d

3.把一般位置平面變換成投影面垂直面如果把平面內(nèi)的一條直線變換成新投影面的垂直線,那么該平面則變換成新投影面的垂直面。

P1X1c'1b'1

a'1

d'1空間分析:在平面內(nèi)取一條投影面平行線,經(jīng)一次換面后變換成新投影面的垂直線,則該平面變成新投影面的垂直面。作圖方法:兩平面垂直需滿足什么條件?能否只進(jìn)行一次變換?思考:若變換H面,需在面內(nèi)取什么位置直線?正平線!返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法α

a

b

c

acbXVH例:把三角形ABC變換成投影面垂直面。HP1X1作圖過程:★在平面內(nèi)取一條水平線AD。d

d★將AD變換成新投影面的垂直線。d'1●a'1d'1●c'1●反映平面對哪個投影面的夾角?.返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法a'1

b'1●需經(jīng)幾次變換?一次換面,把一般位置平面變換成新投影面的垂直面;二次換面,再變換成新投影面的平行面。X2P1P24.把一般位置平面變換成投影面平行面ab

a

c

b

XVHc作圖:AB是水平線空間分析:a2●c2●b2●c'1●X2軸的位置?平面的實形.X1HP1.與其平行返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法b'1

距離dd'1X1HP1X2P1P2c2

d

例1:求點C到直線AB的距離,并求垂足D。cc

b

a

abXVH

五、換面法的應(yīng)用如下圖:當(dāng)直線AB垂直于投影面時,CD平行于投影面,其投影反映實長。APBDCca

b

d作圖:求C點到直線AB的距離,就是求垂線CD的實長??臻g及投影分析:c'1

a'1

a2

b2

d2

過c'1作線平行于x2軸。...如何確定d1點的位置?返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法b

a

abcd●c

例2:已知兩交叉直線AB和CD的公垂線的長度為MN,且AB為水平線,求CD及MN的投影。MN●m

●d

●a'1≡b'1≡m'1●n'1●c'1●d'1●n空間及投影分析:VHXHP1X1圓半徑=MN●n

●m當(dāng)直線AB垂直于投影面時,MN平行于投影面,這時它的投影m1n1=MN,且m1n1⊥c1d1。P1ACDNMc1d1a1m1b1n1B作圖:請注意各點的投影如何返回?求m點是難點。..返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法空間及投影分析:AB與CD都平行于投影面時,其投影的夾角才反映實大(60°),因此需將AB與C點所確定的平面變換成投影面平行面。例3:過C點作直線CD與AB相交成60o角。

d

X1HP1X1P1P2ab

a

c

b

XVHc作圖:c2●●●c'1●a'1

b'1●a2●d2●d●b2●幾個解?兩個解!已知點C是等邊三角形的頂點,另兩個頂點在直線AB上,求等邊三角形的投影。思考:如何解?解法相同!60°D點的投影如何返回?..返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法P2P1X2HP1X1c

d

b

a

dacb●d'1●c'1●a'1●d2●b'1c2●●a2≡

b2θVHXθ例4:求平面ABC和ABD的兩面角??臻g及投影分析:由幾何定理知:兩面角為兩平面同時與第三平面垂直相交時所得兩交線之間的夾角。在投影圖中,兩平面的交線垂直于投影面時,則兩平面垂直于該投影面,它們的投影積聚成直線,直線間的夾角為所求。..返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法

小結(jié)

本章主要介紹了投影變換的一種常用方法

——換面法。一、換面法就是改變投影面的位置,使它與所給物體或其幾何元素處于解題所需的特殊位置。二、換面法的關(guān)鍵是要注意新投影面的選擇條件,即必須使新投影面與某一原投面保持垂直關(guān)系,同時又有利于解題需要,這樣才能使正投影規(guī)律繼續(xù)有效。三、點的變換規(guī)律是換面法的作圖基礎(chǔ),四個基本問題是解題的基本作圖方法,必需熟練掌握。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法換面法的四個基本問題:

2.把一般位置直線變成投影面垂直線1.把一般位置直線變成投影面平行線3.把一般位置平面變成投影面垂直面4.把一般位置平面變成投影面平行面變換一次投影面變換一次投影面變換兩次投影面變換兩次投影面需先在面內(nèi)作一條投影面平行線返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法四、解題時一般要注意下面幾個問題:⒈分析已給條件的空間情況,弄清原始條件中

物體與原投影面的相對位置,并把這些條件抽象成幾何元素(點、線、面等)。⒉根據(jù)要求得到的結(jié)果,確定出有關(guān)幾何元素對新投影面應(yīng)處于什么樣的特殊位置(垂直或平行),據(jù)此選擇正確的解題思路與方法。⒊在具體作圖過程中,要注意新投影與原投影在變換前后的關(guān)系,既要在新投影體系中正確無誤地求得結(jié)果,又能將結(jié)果返回到原投

影體系中去。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法VWH2.5.1體的投影及三視圖一、體的投影體的投影,實質(zhì)上是構(gòu)成該體的所有表面的投影總和。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法二、三面投影與三視圖1.視圖的概念主視圖(frontview)

體的正面投影俯視圖(verticalview)

體的水平投影左視圖(leftview)

體的側(cè)面投影2.三視圖之間的度量對應(yīng)關(guān)系三等關(guān)系主視俯視長相等且對正主視左視高相等且平齊俯視左視寬相等且對應(yīng)長高寬寬長對正寬相等高平齊視圖就是將物體向投影面投射所得的圖形。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法3.三視圖之間的方位對應(yīng)關(guān)系

主視圖反映:上、下、左、右

俯視圖反映:前、后、左、右

左視圖反映:上、下、前、后上下左右后前上下前后左右返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法2.5.2基本體的形成及其三視圖常見的基本幾何體平面基本體曲面基本體返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法點的可見性規(guī)定:若點所在的平面的投影可見,點的投影也可見;若平面的投影積聚成直線,點的投影也可見。由于棱柱的表面都是平面,所以在棱柱的表面上取點與在平面上取點的方法相同。一、平面基本體1.棱柱⑵棱柱的三視圖⑶棱柱面上取點

a

a

a

(b

)

b⑴棱柱的組成

b

由兩個底面和幾個側(cè)棱面組成。側(cè)棱面與側(cè)棱面的交線叫側(cè)棱線,側(cè)棱線相互平行。在圖示位置時,六棱柱的兩底面為水平面,在俯視圖中反映實形。前后兩側(cè)棱面是正平面,其余四個側(cè)棱面是鉛垂面,它們的水平投影都積聚成直線,與六邊形的邊重合。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法()

s

s

2.棱錐⑵棱錐的三視圖⑶在棱錐面上取點

k

k

k

b

a

c

abc

a

(c

)b

s

n

n

⑴棱錐的組成

n

由一個底面和幾個側(cè)棱面組成。側(cè)棱線交于有限遠(yuǎn)的一點——錐頂。同樣采用平面上取點法。棱錐處于圖示位置時,其底面ABC是水平面,在俯視圖上反映實形。側(cè)棱面SAC為側(cè)垂面,另兩個側(cè)棱面為一般位置平。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法圓柱面的俯視圖積聚成一個圓,在另兩個視圖上分別以兩個方向的輪廓素線的投影表示。二、回轉(zhuǎn)體1.圓柱體⑵圓柱體的三視圖

⑶輪廓線素線的投影與曲面的可見性的判斷

⑷圓柱面上取點

a

a

a

圓柱面上與軸線平行的任一直線稱為圓柱面的素線。⑴圓柱體的組成由圓柱面和兩底面組成。圓柱面是由直線AA1繞與它平行的軸線OO1旋轉(zhuǎn)而成。A1AOO1直線AA1稱為母線。利用投影的積聚性返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法在圖示位置,俯視圖為一圓。另兩個視圖為等邊三角形,三角形的底邊為圓錐底面的投影,兩腰分別為圓錐面不同方向的兩條輪廓素線的投影。圓錐面是由直線SA繞與它相交的軸線OO1旋轉(zhuǎn)而成。

S稱為錐頂,直線SA稱為母線。圓錐面上過錐頂?shù)娜我恢本€稱為圓錐面的素線。O1O⑴圓錐體的組成

s

s

●2.圓錐體⑵圓錐體的三視圖⑶輪廓線素線的投影與曲面的可見性的判斷⑷圓錐面上取點

k

★輔助直線法★輔助圓法

(n

)s●n

k(n

)●

k

●由圓錐面和底面組成。SA如何在圓錐面上作直線?過錐頂作一條素線。圓的半徑?返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法三個視圖分別為三個和圓球的直徑相等的圓,它們分別是圓球三個方向輪廓線的投影。3.圓球圓母線以它的直徑為軸旋轉(zhuǎn)而成。⑵圓球的三視圖⑶輪廓線的投影與曲面可見性的判斷⑷圓球面上取點

k

輔助圓法

k

k

⑴圓球的形成圓的半徑?返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法2.6平面體及回轉(zhuǎn)體的截切截切:用一個平面與立體相交,截去立體的一部分。截平面

——用以截切物體的平面。截交線

——截平面與物體表面的交線。截斷面

——因截平面的截切,在物體上形成的平面。討論的問題:截交線的分析和作圖。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法2.6.1平面體的截切一、平面截切的基本形式截交線是一個由直線組成的封閉的平面多邊形,其形狀取決于平面體的形狀及截平面對平面體的截切位置。截交線的每條邊是截平面與棱面的交線。求截交線的實質(zhì)是求兩平面的交線截交線的性質(zhì):返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法二、平面截切體的畫圖⒈求截交線的兩種方法:★求各棱線與截平面的交點→棱線法?!锴蟾骼饷媾c截平面的交線→棱面法。關(guān)鍵是正確地畫出截交線的投影。⒉求截交線的步驟:☆截平面與體的相對位置☆截平面與投影面的相對位置確定截交線的投影特性確定截交線的形狀★空間及投影分析★畫出截交線的投影分別求出截平面與棱面的交線,并連接成多邊形。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例1:求四棱錐被截切后的俯視圖和左視圖。3

2

1

(4

)1

●2

●4

●3

●1●2●4●★空間分析交線的形狀?3●★投影分析★求截交線★分析棱線的投影★檢查尤其注意檢查截交線投影的類似性截平面與體的幾個棱面相交?截交線在俯、左視圖上的形狀?返回下頁上頁立體最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例1:求四棱錐被截切后的俯視圖和左視圖。我們采用的是哪種解題方法?棱線法!返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例2:求四棱錐被截切后的俯視圖和左視圖。121

(2

)Ⅰ、Ⅱ兩點分別同時位于三個面上。三面共點:2

●1

注意:要逐個截平面分析和繪制截交線。當(dāng)平面體只有局部被截切時,先假想為整體被截切,求出截交線后再取局部。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例2:求四棱錐被截切后的俯視圖和左視圖。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例3:求八棱柱被平面P截切后的俯視圖。P

截交線的形狀?ⅠⅡⅢⅣⅤⅥⅦⅧ1

5

4

3

2

8

7

6

截交線的投影特性?2

≡3

≡6

≡7

1

≡8

4

≡5

求截交線15476328分析棱線的投影檢查截交線的投影返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例3:求八棱柱被平面P截切后的俯視圖。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法2.6.2回轉(zhuǎn)體的截切一、回轉(zhuǎn)體截切的基本形式截交線的性質(zhì):截交線是截平面與回轉(zhuǎn)體表面的共有線。截交線的形狀取決于回轉(zhuǎn)體表面的形狀及

截平面與回轉(zhuǎn)體軸線的相對位置。截交線都是封閉的平面圖形。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法二、求平面與回轉(zhuǎn)體的截交線的一般步驟

⒈空間及投影分析☆分析回轉(zhuǎn)體的形狀以及截平面與回轉(zhuǎn)體軸線的相對位置,以便確定截交線的形狀。☆分析截平面與投影面的相對位置,明確截交

線的投影特性,如積聚性、類似性等。找出截交線的已知投影,予見未知投影。⒉畫出截交線的投影當(dāng)截交線的投影為非圓曲線時,其作圖步驟為:☆將各點光滑地連接起來,并判斷截交線的可見性?!钕日姨厥恻c,補(bǔ)充中間點。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法㈠圓柱體的截切截平面與圓柱面的截交線的形狀取決于截平面與圓柱軸線的相對位置垂直圓橢圓平行兩平行直線傾斜PVPPVPPVP返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例1:求左視圖★空間及投影分析★求截交線★分析圓柱體輪廓素線的投影截平面與體的相對位置截平面與投影面的相對位置●●解題步驟:同一立體被多個平面截切,要逐個截平面進(jìn)行截交線的分析和作圖。●●返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例1:求左視圖★空間及投影分析★求截交線★分析圓柱體輪廓素線的投影截平面與體的相對位置截平面與投影面的相對位置解題步驟:返回下頁上頁立體最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例2:求左視圖●●●●返回下頁上頁立體最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例2:求左視圖返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例3:求俯視圖返回下頁上頁立體最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例3:求俯視圖返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法截交線的已知投影?●●●●●●●●●●●●例4:求左視圖★找特殊點★補(bǔ)充中間點★光滑連接各點★分析輪廓素線的投影截交線的側(cè)面投影是什么形狀?截交線的空間形狀?返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例4:求左視圖★找特殊點★找中間點★光滑連接各點★分析輪廓素線的投影返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法橢圓的長、短軸隨截平面與圓柱軸線夾角的變化而改變。45°什么情況下投影為圓呢?截平面與圓柱軸線成45°時。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例5:求左視圖例5:求左視圖虛實分界點返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法㈡圓錐體的截切根據(jù)截平面與圓錐軸線的相對位置不同,截交線有五種形狀。過錐頂兩相交直線PV圓PVθθ=90°PV橢圓αθθ>α拋物線PVθαθ=α雙曲線PVαθ=0°<α返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例:圓錐被正垂面截切,求截交線,并完成三視圖。截交線的空間形狀?截交線的投影特性?★找特殊點如何找橢圓另一根軸的端點?★補(bǔ)充中間點★光滑連接各點★分析輪廓線的投影返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例:圓錐被正垂面截切,求截交線,并完成三視圖。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法㈢球體的截切平面與圓球相交,截交線的形狀都是圓,但根據(jù)截平面與投影面的相對位置不同,其截交線的投影可能為圓、橢圓或積聚成一條直線。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例:求半球體截切后的俯視圖和左視圖。水平面截圓球的截交線的投影,在俯視圖上為部分圓弧,在側(cè)視圖上積聚為直線。兩個側(cè)平面截圓球的截交線的投影,在側(cè)視圖上為部分圓弧,在俯視圖上積聚為直線。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例:求半球體截切后的俯視圖和左視圖。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法●●●●●●●●●●㈣復(fù)合回轉(zhuǎn)體的截切●●●●●●首先分析復(fù)合回轉(zhuǎn)體由哪些基本回轉(zhuǎn)體組成以及它們的連接關(guān)系,然后分別求出這些基本回轉(zhuǎn)體的截交線,并依次將其連接。例:求作頂尖的俯視圖返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法

小結(jié)一、平面體的截交線一般情況下是由直線組成的封閉的平面多邊形,多邊形的邊是截平面與棱面的交線。求截交線的方法:棱線法棱面法二、平面截切回轉(zhuǎn)體,截交線的形狀取決于截平面與被截立體軸線的相對位置。截交線是截平面與回轉(zhuǎn)體表面的共有線。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法當(dāng)截交線的投影為非圓曲線時,要先找特殊點,再補(bǔ)充中間點,最后光滑連接各點。注意分析平面體的棱線和回轉(zhuǎn)體輪廓素線的投影。⑵分析截平面與被截立體對投影面的相對位置,以確定截交線的投影特性。⒉求截交線三、解題方法與步驟⒈空間及投影分析⑴分析截平面與被截立體的相對位置,以

確定截交線的形狀。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法⒊當(dāng)單體被多個截平面截切時,要逐個截平面進(jìn)行截交線的分析與作圖。當(dāng)只有

局部被截切時,先按整體被截切求出截

交線,然后再取局部。

⒋求復(fù)合回轉(zhuǎn)體的截交線,應(yīng)首先分析復(fù)合回轉(zhuǎn)體由哪些基本回轉(zhuǎn)體組成以及它們的連接關(guān)系,然后分別求出這些基本

回轉(zhuǎn)體的截交線,并依次將其連接。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法平面體與回轉(zhuǎn)體相貫回轉(zhuǎn)體與回轉(zhuǎn)體相貫多體相貫2.7.1概述1.相貫的形式兩立體相交叫作相貫,其表面產(chǎn)生的交線叫做相貫線。

本章主要討論常用不同立體相交時其表面相貫線的投影特性及畫法。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法2.相貫線的主要性質(zhì)其作圖實質(zhì)是找出相貫的兩立體表面的若干共有點的投影?!锕灿行浴锉砻嫘韵嘭灳€位于兩立體的表面上。相貫線是兩立體表面的共有線?!锓忾]性相貫線一般是封閉的空間折線(通常由直線和曲線組成)或空間曲線。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法1.相貫線的性質(zhì)

相貫線是由若干段平面曲線(或直線)所組成的空間折線,每一段是平面體的棱面與回轉(zhuǎn)體表面的交線。2.7.2平面體與回轉(zhuǎn)體相貫2.作圖方法分析各棱面與回轉(zhuǎn)體表面的相對位置,從而確定交線的形狀。求出各棱面與回轉(zhuǎn)體表面的截交線。連接各段交線,并判斷可見性。求交線的實質(zhì)是求各棱面與回轉(zhuǎn)面的截交線。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例1:補(bǔ)全主視圖

空間分析:四棱柱的四個棱面分別與圓柱面相交,前后兩棱面與圓柱軸線平行,截交線為兩段直線;左右兩棱面與圓柱軸線垂直,截交線為兩段圓弧。

投影分析:由于相貫線是兩立體表面的共有線,所以相貫線的側(cè)面投影積聚在一段圓弧上,水平投影積聚在矩形上。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例1:補(bǔ)全主視圖返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例2:求作主視圖返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例2:求作主視圖返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法1.相貫線的性質(zhì)相貫線一般為光滑封閉的空間曲線,它是兩回轉(zhuǎn)體表面的共有線。2.7.3回轉(zhuǎn)體與回轉(zhuǎn)體相貫2.作圖方法

利用投影的積聚性直接找點。用輔助平面法。先找特殊點。⒊作圖過程補(bǔ)充中間點。確定交線的彎曲趨勢確定交線的范圍返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例1:圓柱與圓柱相貫,求其相貫線?!瘛瘛瘛瘛瘛瘛瘛瘛?/p>

空間及投影分析:小圓柱軸線垂直于H面,水平投影積聚為圓,根據(jù)相貫線的共有性,相貫線的水平投影即為該圓。大圓柱軸線垂直于W面,側(cè)面投影積聚為圓,相貫線的側(cè)面投影在該圓上。求相貫線的投影:利用積聚性,采用表面取點法?!钫姨厥恻c☆補(bǔ)充中間點☆光滑連接返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例1:圓柱與圓柱相貫,求其相貫線。返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法當(dāng)圓柱直徑變化時,相貫線的變化趨勢。交線向大圓柱一側(cè)彎交線為兩條平面曲線(橢圓)返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例2:補(bǔ)全主視圖●●●●●●●●●●●●●●●●●●●★外形交線◆兩外表面相貫◆一內(nèi)表面和一外表面相貫★內(nèi)形交線◆兩內(nèi)表面相貫返回下頁上頁立體最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例2:補(bǔ)全主視圖無輪是兩外表面相貫,還是一內(nèi)表面和一外表面相貫,或者兩內(nèi)表面相貫,求相貫線的方法和思路是一樣的。小結(jié):返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法●例3:求主視圖●●●●●相切處無線×外表面與外表面相貫,內(nèi)表面與內(nèi)表面相貫。分別求其相貫線。返回下頁上頁立體最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例3:求主視圖返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例4:圓柱與圓錐相貫,求其相貫線的投影?!艨臻g及投影分析:相貫線為一光滑的封閉的空間曲線。它的側(cè)面投影有積聚性,正面投影、水平投影沒有積聚性,應(yīng)分別求出?!艚忸}方法:輔助平面法返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法輔助平面法:根據(jù)三面共點的原理,利用輔助平面求出兩回轉(zhuǎn)體表面上的若干共有點,從而畫出相貫線的投影。作圖方法:

假想用輔助平面截切兩回轉(zhuǎn)體,分別得出兩回轉(zhuǎn)體表面的截交線。由于截交線的交點既在輔助平面內(nèi),又在兩回轉(zhuǎn)體表面上,因而是相貫線上的點。輔助平面的選擇原則:

使輔助平面與兩回轉(zhuǎn)體表面的截交線的投影簡單易畫,例如直線或圓。一般選擇投影面平行面返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例4:圓柱與圓錐相貫,求其相貫線的投影。假想用水平面P截切立體,P面與圓柱體的截交線為兩條直線,與圓錐面的交線為圓,圓與兩直線的交點即為交線上的點。P●●●●返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法●例4:圓柱與圓錐相貫,求其相貫線的投影?!瘛瘛瘛瘛瘛瘛瘛瘛瘛瘛瘛窠忸}步驟:★求特殊點★用輔助平面法求中間點★光滑連接各點返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例4:圓柱與圓錐相貫,求其相貫線的投影。解題步驟:★求特殊點★用輔助平面法求中間點★光滑連接各點返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法123例5:補(bǔ)全主視圖●●●●●●●●這是一個多體相貫的例子,首先分析它是由哪些基本體組成的,這些基本體是如何相貫的,然后分別進(jìn)行相貫線的分析與作圖。由哪些立體組成呢?哪兩個立體相貫?1與21與32與3返回下頁上頁立體最全機(jī)械制圖_畫法幾何_零件圖_組合體_尺寸標(biāo)注_換面法例5:補(bǔ)全主視圖三面共點●●●作圖時要抓住一個關(guān)鍵點,相貫線匯交于這一點。哪個點呢?返回下頁上頁最全機(jī)械制圖_畫法幾何_零件圖_組

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論