版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年四川省綿陽是南山中學數(shù)學高二上期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正方體中,AC與BD的交點為M.設則下列向量與相等的向量是()A. B.C. D.2.已知,是空間中的任意兩個非零向量,則下列各式中一定成立的是()A. B.C. D.3.若函數(shù)在上有且僅有一個極值點,則實數(shù)的取值范圍為()A. B.C. D.4.已知一組數(shù)據(jù)為:2,4,6,8,這4個數(shù)的方差為()A.4 B.5C.6 D.75.設,則曲線在點處的切線的傾斜角是()A. B.C. D.6.已知關于的不等式的解集為,則不等式的解集為()A.或 B.C.或 D.7.在中國古代,人們用圭表測量日影長度來確定節(jié)氣,一年之中日影最長一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,其日影長依次成等差數(shù)列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺8.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.丹麥數(shù)學家琴生(Jensen)是世紀對數(shù)學分析做出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設函數(shù)在上的導函數(shù)為,在上的導函數(shù)為,在上恒成立,則稱函數(shù)在上為“凹函數(shù)”.則下列函數(shù)在上是“凹函數(shù)”的是()A. B.C. D.10.在區(qū)間內隨機取一個數(shù),則方程表示焦點在軸上的橢圓的概率是A. B.C. D.11.若公差不為0的等差數(shù)列的前n項和是,,且,,為等比數(shù)列,則使成立的最大n是()A.6 B.10C.11 D.1212.有一個圓錐形鉛垂,其底面直徑為10cm,母線長為15cm.P是鉛垂底面圓周上一點,則關于下列命題:①鉛垂的側面積為150cm2;②一只螞蟻從P點出發(fā)沿鉛垂側面爬行一周、最終又回到P點的最短路徑的長度為cm.其中正確的判斷是()A.①②都正確 B.①正確、②錯誤C.①錯誤、②正確二、填空題:本題共4小題,每小題5分,共20分。13.若圓的一條直徑的端點是、,則此圓的方程是_______14.已知P為拋物線上的一個動點,設P到拋物線準線的距離為d,點,那么的最小值為______15.點在以,為焦點的橢圓上運動,則的重心的軌跡方程是___________.16.用組成所有沒有重復數(shù)字的五位數(shù)中,滿足與相鄰并且與不相鄰的五位數(shù)共有____________個.(結果用數(shù)值表示)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設O為坐標原點,動點P在圓上,過點P作軸的垂線,垂足為Q且.(1)求動點D的軌跡E的方程;(2)直線與圓相切,且直線與曲線E相交于兩不同的點A、B,T為線段AB的中點.線段OA、OB分別與圓O交于M、N兩點,記的面積分別為,求的取值范圍.18.(12分)已知拋物線y2=2px(p>0)的焦點為F,過F且與x軸垂直的直線交該拋物線于A,B兩點,|AB|=4(1)求拋物線的方程;(2)過點F的直線l交拋物線于P,Q兩點,若△OPQ的面積為4,求直線l的斜率(其中O為坐標原點)19.(12分)已知集合,.(1)當時,求AB;(2)設,,若是成立的充分不必要條件,求實數(shù)的取值范圍.20.(12分)在下列所給的三個條件中任選一個,補充在下面問題中,并完成解答(若選擇多個條件分別解答,則按第一個解答計分).①與直線平行;②與直線垂直;③直線l的一個方向向量為;已知直線l過點,且___________.(1)求直線l的一般方程;(2)若直線l與圓C:相交于M,N兩點,求弦長.21.(12分)設橢圓的左焦點為,上頂點為.已知橢圓的短軸長為4,離心率為(1)求橢圓的方程;(2)設點在橢圓上,且異于橢圓的上、下頂點,點為直線與軸的交點,點且(為原點),求直線的斜率22.(10分)已知數(shù)列滿足:(1)求數(shù)列的通項公式;(2)設數(shù)列的前n項和為.若對恒成立.求正整數(shù)m的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)空間向量的運算法則,推出的向量表示,可得答案.【詳解】,故選:C.2、C【解析】利用向量數(shù)量積的定義及運算性質逐一分析各選項即可得答案.【詳解】解:對A:因為,所以,故選項A錯誤;對B:因為,故選項B錯誤;對C:因為,故選項C正確;對D:因為,故選項D錯誤故選:C.3、C【解析】根據(jù)極值點的意義,可知函數(shù)的導函數(shù)在上有且僅有一個零點.結合零點存在定理,即可求得的取值范圍.【詳解】函數(shù)則因為函數(shù)在上有且僅有一個極值點即在上有且僅有一個零點根據(jù)函數(shù)零點存在定理可知滿足即可代入可得解得故選:C【點睛】本題考查了函數(shù)極值點的意義,函數(shù)零點存在定理的應用,屬于中檔題.4、B【解析】根據(jù)數(shù)據(jù)的平均數(shù)和方差的計算公式,準確計算,即可求解.【詳解】由平均數(shù)的計算公式,可得,所以這4個數(shù)的方差為故選:B.5、C【解析】根據(jù)導數(shù)的概念可得,再利用導數(shù)的幾何意義即可求解.【詳解】因為,所以,則曲線在點處的切線斜率為,故所求切線的傾斜角為.故選:C6、A【解析】由一元二次不等式的解集可得且,確定a、b、c間的數(shù)量關系,再求的解集.【詳解】由題意知:且,得,從而可化為,等價于,解得或.故選:A.7、A【解析】由題意可知,十二個節(jié)氣其日影長依次成等差數(shù)列,設冬至日的日影長為尺,公差為尺,利用等差數(shù)列的通項公式,求出,即可求出,從而得到答案【詳解】設從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣其日影長依次成等差數(shù)列{},如冬至日的日影長為尺,設公差為尺.由題可知,所以,,,,故選:A8、C【解析】利用等差數(shù)列的定義和數(shù)列單調性的定義判斷可得出結論.【詳解】若,則,即,此時,數(shù)列為單調遞增數(shù)列,即“”“數(shù)列為單調遞增數(shù)列”;若等差數(shù)列為單調遞增數(shù)列,則,即“”“數(shù)列為單調遞增數(shù)列”.因此,“”是“數(shù)列為單調遞增數(shù)列”的充分必要條件.故選:C.9、B【解析】根據(jù)“凹函數(shù)”的定義逐項驗證即可解出【詳解】對A,,當時,,所以A錯誤;對B,,在上恒成立,所以B正確;對C,,,所以C錯誤;對D,,,因為,所以D錯誤故選:B10、D【解析】若方程表示焦點在軸上的橢圓,則,解得,,故方程表示焦點在軸上的橢圓的概率是,故選D.11、C【解析】設等差數(shù)列的公差為d,根據(jù),且,,為等比數(shù)列,求得首項和公差,再利用前n項和公式求解.【詳解】設等差數(shù)列的公差為d,因為,且,,為等比數(shù)列,所以,解得或(舍去),則,所以,解得,所以使成立的最大n是11,故選:C12、C【解析】根據(jù)圓錐的側面展開圖為扇形,由扇形的面積公式計算即可判斷①,在展開圖中可知沿著爬行即為最短路徑,計算即可判斷②.【詳解】直徑為10cm,母線長為15cm.底面圓周長為.將其側面展開后得到扇形半徑為cm,弧長為,則扇形面積為,①錯誤.將其側面展開,則爬行最短距離為,由弧長公式得展開后扇形弧度數(shù)為,作,,又,,cm,②正確.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先設圓上任意一點的坐標,然后利用直徑對應的圓周角為直角,再利用向量垂直建立方程即可【詳解】設圓上任意一點的坐標為可得:,則有:,即解得:故答案為:14、5【解析】由拋物線的定義可得,所以,由圖可知當三點共線時,取得最小值,從而可求得結果【詳解】拋物線的焦點,準線為,如圖,過作垂直準線于點,則,所以,由圖可知當三點共線時,取得最小值,即最小值為,,所以的最小值為5,故答案為:515、【解析】設出點和三角形的重心,利用重心坐標公式得到點和三角形的重心坐標的關系,,代入橢圓方程即可求得軌跡方程,再利用,,三點不共線得到.【詳解】設,,由,得,即,,因為為的重心,所以,,即,,代入,得,即,因為,,三點不共線,所以,則的重心的軌跡方程是.故答案:.16、【解析】由題意,先利用捆綁法排列和,再利用插空法排列和,即可得答案.【詳解】因為滿足與相鄰并且與不相鄰,則將捆綁,內部排序得,再對和全排列得,利用插空法將和插空得,所以滿足題意得五位數(shù)有.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)設出點D的坐標,借助向量運算表示出點P的坐標代入圓O的方程計算作答.(2)在直線的斜率存在時設出其方程,與軌跡E的方程聯(lián)立,借助韋達定理表示出,再利用二次函數(shù)性質計算得解,然后計算直線的斜率不存在的值作答.【小問1詳解】設點,則,因,則有,又點P在圓上,即,所以動點D的軌跡E的方程是.【小問2詳解】當直線的斜率存在時,設其方程為:,因直線與圓相切,則,即,而時,直線與橢圓E相切,不符合題意,因此,由消去x并整理得:,設,則,而點T是線段AB中點,則有:,令,則,而,當,即時,,當,即時,,而,于是得,當直線的斜率不存在時,直線,,此時,所以的取值范圍是.【點睛】思路點睛:圓錐曲線中的最值問題,往往需要利用韋達定理構建目標的函數(shù)關系式,自變量可以斜率或點的橫、縱坐標等.而目標函數(shù)的最值可以通過二次函數(shù)或基本不等式或導數(shù)等求得.18、(1);(2).【解析】(1)根據(jù)拋物線的定義以及拋物線通徑的性質可得,從而可得結果;(2)設直線的方程為,代入,得,利用弦長公式,結合韋達定理可得的值,由點到直線的距離公式,根據(jù)三角形面積公式可得,從而可得結果.【詳解】(1)由拋物線的定義得到準線的距離都是p,所以|AB|=2p=4,所以拋物線的方程為y2=4x(2)設直線l的方程為y=k(x-1),P(x1,y1),Q(x2,y2)因為直線l與拋物線有兩個交點,所以k≠0,得,代入y2=4x,得,且恒成立,則,y1y2=-4,所以又點O到直線l的距離,所以,解得,即【點睛】本題主要考查直線與拋物線的位置關系的相關問題,意在考查綜合利用所學知識解決問題能力和較強的運算求解能力,其常規(guī)思路是先把直線方程與圓錐曲線方程聯(lián)立,消元、化簡,然后應用根與系數(shù)的關系建立方程,解決相關問題19、(1);(2).【解析】(1)由,解得范圍,可得,由可得:,解得.即可得出(2)由,解得.根據(jù)是成立的必要條件,利用包含關系列不等式即可得出實數(shù)的取值范圍【詳解】(1)由,解得,可得:,可得:,化為:,解得,所以=.(2)q是p成立的充分不必要條件,所以集合B是集合A的真子集.由,解得,又集合A=,所以或解得0≤a≤2,即實數(shù)a的取值范圍是.【點睛】本題考查了簡易邏輯的判定方法、集合之間的關系、不等式的解法,考查了推理能力與計算能力,屬于基礎題20、(1)若選擇①②,則直線方程為:;若選擇③,則直線方程為;(2)若選擇①②,則;若選擇③,則.【解析】(1)根據(jù)所選擇的條件,結合直線過點,即可寫出直線的方程;(2)利用(1)中所求直線方程,以及弦長公式,即可求得結果.【小問1詳解】若選①與直線平行,則直線的斜率;又其過點,故直線的方程為,則其一般式為;若選②與直線垂直,則直線的斜率滿足,解得;又其過點,故直線的方程為,則其一般式為;若選③直線l的一個方向向量為,則直線的斜率;又其過點,故直線的方程為,則其一般式為;綜上所述:若選擇①②,則直線方程為:;若選擇③,則直線方程為.【小問2詳解】對圓C:,其圓心為,半徑,根據(jù)(1)中所求,若選擇①②,則直線方程為,則圓心到直線的距離,則直線截圓所得弦長;若選擇③,則直線方程為,則圓心到直線的距離,則直線截圓所得弦長.綜上所述,若選擇①②,則;若選擇③,則.21、(1)(2)或【解析】(1)根據(jù)已知條件求得,由此求得橢圓方程.(2)設出直線的方程,并與橢圓方程聯(lián)立,求得點坐標,根據(jù)列方程,化簡求得直線的斜率.【小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025福建省建筑安全員A證考試題庫
- 貴陽信息科技學院《生藥學Ⅱ》2023-2024學年第一學期期末試卷
- 2025湖北省建筑安全員-C證考試題庫
- 2025年山西建筑安全員A證考試題庫
- 2025四川建筑安全員考試題庫附答案
- 廣州幼兒師范高等??茖W校《人文地理學理論與進展》2023-2024學年第一學期期末試卷
- 廣州衛(wèi)生職業(yè)技術學院《影視制作實務》2023-2024學年第一學期期末試卷
- 廣州鐵路職業(yè)技術學院《巖土工程測試技術》2023-2024學年第一學期期末試卷
- 2025安徽建筑安全員《C證》考試題庫
- 人教PEP版四年級英語下冊Recycle2第一課時教學課件完整版
- 2025年國家圖書館招聘筆試參考題庫含答案解析
- 機器人課程課程設計
- 南充市市級事業(yè)單位2024年公招人員擬聘人員歷年管理單位遴選500模擬題附帶答案詳解
- 中國重癥患者腸外營養(yǎng)治療臨床實踐專家共識(2024)解讀
- 零星維修工程施工方案(定)
- 我的專業(yè)成長故事
- 養(yǎng)老金核定表
- ISO9001-2015中文版(完整)
- 武廣高鐵路基常見病害案例解析
- 東富龍凍干機計算機系統(tǒng)驗證方案
- H13熱作模具鋼的化學成分及其發(fā)展的研究
評論
0/150
提交評論