版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年黑龍江省肇東一中數(shù)學(xué)高二上期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.?dāng)?shù)列滿足,,,則數(shù)列的前8項和為()A.25 B.26C.27 D.282.在正方體中,下列幾種說法不正確的是A. B.B1C與BD所成的角為60°C.二面角的平面角為 D.與平面ABCD所成的角為3.在平面區(qū)域內(nèi)隨機投入一點P,則點P的坐標(biāo)滿足不等式的概率是()A. B.C. D.4.?dāng)?shù)列,,,,,中,有序?qū)崝?shù)對是()A. B.C. D.5.圓與圓的位置關(guān)系為()A.內(nèi)切 B.相交C.外切 D.外離6.在各項都為正數(shù)的等比數(shù)列中,首項,前3項和為21,則()A.84 B.72C.33 D.1897.已知橢圓和雙曲線有共同焦點,是它們一個交點,且,記橢圓和雙曲線的離心率分別為,則的最大值為A.3 B.2C. D.8.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),,當(dāng)時,,則使得成立的的取值范圍是A. B.C D.9.如圖,P為圓錐的頂點,O是圓錐底面的圓心,圓錐PO的軸截面PAE是邊長為2的等邊三角形,是底面圓的內(nèi)接正三角形.則()A. B.C. D.10.若雙曲線的漸近線方程為,則實數(shù)a的值為()A B.C.2 D.11.已知點,點在拋物線上,過點的直線與直線垂直相交于點,,則的值為()A. B.C. D.12.動點P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍是____________.14.曲線在點M(π,0)處的切線方程為________15.已知點,平面過原點,且垂直于向量,則點到平面的距離是_________.16.已知函數(shù),有且只有一個零點,則實數(shù)的取值范圍是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)求的單調(diào)遞減區(qū)間;(Ⅱ)若當(dāng)時,恒成立,求實數(shù)a的取值范圍.18.(12分)在中,其頂點坐標(biāo)為.(1)求直線的方程;(2)求的面積.19.(12分)已知直線,半徑為的圓與相切,圓心在軸上且在直線的右上方.(1)求圓的方程;(2)過點的直線與圓交于兩點在軸上方),問在軸正半軸上是否存在定點,使得軸平分?若存在,請求出點的坐標(biāo);若不存在,請說明理由.20.(12分)設(shè)函數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍21.(12分)已知圓與直線相切(1)求圓O的標(biāo)準(zhǔn)方程;(2)若線段AB的端點A在圓O上運動,端點B的坐標(biāo)是,求線段AB的中點M的軌跡方程22.(10分)已知各項均為正數(shù)的等比數(shù)列的前n項和為,且,(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)通項公式及求出,從而求出前8項和.【詳解】當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,則數(shù)列的前8項和為.故選:C2、D【解析】在正方體中,利用線面關(guān)系逐一判斷即可.【詳解】解:對于A,連接AC,則AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正確;對于B,∵B1C∥D,即B1C與BD所成的角為∠DB,連接△DB為等邊三角形,∴B1C與BD所成的角為60°,故B正確;對于C,∵BC⊥平面A1ABB1,A1B?平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B?平面A1BC,AB?平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正確;對于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1與平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D錯誤故選D【點睛】本題考查了線面的空間位置關(guān)系及空間角,做出圖形分析是關(guān)鍵,考查推理能力與空間想象能力3、A【解析】根據(jù)題意作出圖形,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】根據(jù)題意作出示意圖,如圖所示:于,所求概率.故選:A.4、A【解析】根據(jù)數(shù)列的概念,找到其中的規(guī)律即可求解.【詳解】由數(shù)列,,,,,可知,,,,,則,解得,故有序?qū)崝?shù)對是,故選:5、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,根據(jù)圓心距和半徑的關(guān)系,判斷兩圓的位置關(guān)系.【詳解】圓的標(biāo)準(zhǔn)方程為,圓的標(biāo)準(zhǔn)方程為,兩圓的圓心距為,即圓心距等于兩圓半徑之和,故兩圓外切,故選:C.6、A【解析】分析:設(shè)等比數(shù)列的公比為,根據(jù)前三項的和為列方程,結(jié)合等比數(shù)列中,各項都為正數(shù),解得,從而可以求出的值.詳解:設(shè)等比數(shù)列的公比為,首項為3,前三項的和為,,解之得或,在等比數(shù)列中,各項都為正數(shù),公比為正數(shù),舍去),,故選A.點睛:本題考查以一個特殊的等比數(shù)列為載體,通過求連續(xù)三項和的問題,著重考查了等比數(shù)列的通項,等比數(shù)列的性質(zhì)和前項和等知識點,屬于簡單題.7、D【解析】設(shè)橢圓長半軸長為a1,雙曲線的半實軸長a2,焦距2c.根據(jù)橢圓及雙曲線的定義可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根據(jù)余弦定理可得到,利用基本不等式可得結(jié)論【詳解】如圖,設(shè)橢圓的長半軸長為a1,雙曲線的半實軸長為a2,則根據(jù)橢圓及雙曲線的定義:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,設(shè)|F1F2|=2c,∠F1PF2=,則:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化簡得:a12+3a22=4c2,該式可變成:,∴≥2∴,故選D【點睛】本題考查圓錐曲線的共同特征,考查通過橢圓與雙曲線的定義求焦點三角形三邊長,考查利用基本不等式求最值問題,屬于中檔題8、B【解析】構(gòu)造函數(shù),可知函數(shù)為奇函數(shù),利用導(dǎo)數(shù)分析出函數(shù)在上的單調(diào)性,并得出,然后分別在和解不等式,由此可得出不等式的解集.【詳解】構(gòu)造函數(shù),該函數(shù)的定義域為,由于函數(shù)為上的奇函數(shù),則,所以,函數(shù)為上的奇函數(shù),且,,.當(dāng)時,,此時,函數(shù)單調(diào)遞增,由,可得,解得;當(dāng)時,則函數(shù)單調(diào)遞增,由,可得,解得.綜上所述,使得成立的的取值范圍是.故選:B.【點睛】本題考查利用函數(shù)的單調(diào)性求解函數(shù)不等式,根據(jù)導(dǎo)數(shù)不等式的結(jié)構(gòu)構(gòu)造合適的函數(shù)是解題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.9、B【解析】先求出,再利用向量的線性運算和數(shù)量積計算求解.【詳解】解:由題得,,故選:B10、D【解析】由雙曲線的漸近線方程結(jié)合已知可得.【詳解】雙曲線方程為所以漸近線為,故,解得:.故選:D11、D【解析】由題,由于過拋物線上一點的直線與直線垂直相交于點,可得,又,故,所以的坐標(biāo)為,由余弦定理可得.故選:D.考點:拋物線的定義、余弦定理【點睛】本題主要考查拋物線的定義與性質(zhì),考查學(xué)生的計算能力,屬于中檔題12、B【解析】設(shè),根據(jù)兩點間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設(shè),圓化簡為,即圓心為(0,4),半徑為,所以點P到圓心的距離,令,則,令,,為開口向上,對稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求解定義域,由導(dǎo)函數(shù)小于0得到遞減區(qū)間,進而得到不等式組,求出實數(shù)的取值范圍.【詳解】顯然,且,由,以及考慮定義域x>0,解得:.在區(qū)間,上單調(diào)遞減,∴,解得:.故答案為:14、【解析】由題意可得,據(jù)此可得切線的斜率,結(jié)合切點坐標(biāo)即可確定切線方程.【詳解】由函數(shù)的解析式可得:,所求切線的斜率為:,由于切點坐標(biāo)為,故切線方程為:.【點睛】導(dǎo)數(shù)運算及切線的理解應(yīng)注意的問題一是利用公式求導(dǎo)時要特別注意除法公式中分子的符號,防止與乘法公式混淆二是直線與曲線公共點的個數(shù)不是切線的本質(zhì),直線與曲線只有一個公共點,直線不一定是曲線的切線,同樣,直線是曲線的切線,則直線與曲線可能有兩個或兩個以上的公共點三是復(fù)合函數(shù)求導(dǎo)的關(guān)鍵是分清函數(shù)的結(jié)構(gòu)形式.由外向內(nèi)逐層求導(dǎo),其導(dǎo)數(shù)為兩層導(dǎo)數(shù)之積.15、【解析】確定,,利用點到平面的距離為,即可求得結(jié)論.【詳解】由題意,,,設(shè)與的夾角為,則所以點到平面的距離為故答案為:16、【解析】由題知方程,,有且只有一個零點,進而構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性與函數(shù)值得變化情況,作出函數(shù)的大致圖像,數(shù)形結(jié)合求解即可.【詳解】解:因為函數(shù),,有且只有一個零點,所以方程,,有且只有一個零點,令,則,,令,則所以為上的單調(diào)遞減函數(shù),因為,所以當(dāng)時,;當(dāng)時,;所以當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增,在上單調(diào)遞減,因為當(dāng)趨近于時,趨近于,當(dāng)趨近于時,趨近于,且,時,,故的圖像大致如圖所示,所以方程,,有且只有一個零點等價于或.所以實數(shù)的取值范圍是故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)單調(diào)遞減區(qū)間為;(Ⅱ).【解析】(Ⅰ)求函數(shù)的導(dǎo)函數(shù),求的區(qū)間即為所求減區(qū)間;(Ⅱ)化簡不等式,變形為,即求,令,求的導(dǎo)函數(shù)判斷的單調(diào)性求出最小值,可求出的范圍.【詳解】(Ⅰ)由題可知.令,得,從而,∴的單調(diào)遞減區(qū)間為.(Ⅱ)由可得,即當(dāng)時,恒成立.設(shè),則.令,則當(dāng)時,.∴當(dāng)時,單調(diào)遞增,,則當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.∴,∴.【點睛】思路點睛:在函數(shù)中,恒成立問題,可選擇參變分離的方法,分離出參數(shù)轉(zhuǎn)化為或,轉(zhuǎn)化為求函數(shù)的最值求出的范圍.18、(1)(2)【解析】(1)先求出AB的斜率,再利用點斜式寫出方程即可;(2)先求出,再求出C到AB的距離即可得到答案.【小問1詳解】由已知,,所以直線的方程為,即.【小問2詳解】,C到直線AB的距離為,所以的面積為.19、(1);(2)存在,.【解析】(1)設(shè)出圓心,根據(jù)圓心到直線距離等于半徑列方程求出的值可得圓心坐標(biāo),進而可得圓的方程;(2)由題可設(shè)直線的方程為,與圓的方程聯(lián)立,利用韋達定理及可得,即得.【小問1詳解】由已知可設(shè)圓心,則,解得或(舍).所以圓.【小問2詳解】由題可設(shè)直線的方程為,由,得到:顯然成立,所以.①若軸平分,則,所以:,整理得:,將①代入整理得對任意的恒成立,則.∴存在點為時,使得軸平分.20、(1)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2).【解析】(1)求出,進而判斷函數(shù)的單調(diào)性,然后討論符號后可得函數(shù)的單調(diào)區(qū)間;(2)令,則有兩個不同的零點,利用導(dǎo)數(shù)討論的單調(diào)性并結(jié)合零點存在定理可得實數(shù)的取值范圍.【小問1詳解】當(dāng)時,,,記,則,所以在上單調(diào)遞增,又,所以當(dāng)時,;當(dāng)時,,所以單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問2詳解】令,得,記,則,令得,列表得.x0↘極小值↗要使在上有兩個零點,則,所以且函數(shù)在和上各有一個零點當(dāng)時,,,,則,故上無零點,與函數(shù)在上有一個零點矛盾,故不滿足條件所以,又因為,所以考慮,設(shè),,則,則在上單調(diào)遞減,故當(dāng)時,,所以,且,因為,所以,由零點存在定理知在和上各有一個零點綜上可知,實數(shù)a的取值范圍為【點睛】方法點睛:利用導(dǎo)數(shù)研究零點問題:(1)確定零點的個數(shù)問題:可利用數(shù)形結(jié)合的辦法判斷交點個數(shù),如果函數(shù)較為復(fù)雜,可用導(dǎo)數(shù)知識確定極值點和單調(diào)區(qū)間從而確定其大致圖象;(2)方程的有解問題就是判斷是否存在零點的問題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問題處理.可以通過構(gòu)造函數(shù)的方法,把問題轉(zhuǎn)化為研究構(gòu)造的函數(shù)的零點問題;(3)利用導(dǎo)數(shù)硏究函數(shù)零點或方程根,通常有三種思路:①利用最值或極值研究;②利用數(shù)形結(jié)合思想研究;③構(gòu)造輔助函數(shù)硏究.21、(1)(2)【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024美團外賣店配送時效及服務(wù)質(zhì)量合同3篇
- 2025年度體育用品代銷及賽事贊助合同4篇
- 2025年度別墅庭院景觀照明節(jié)能改造與維護合同3篇
- 2024玉石行業(yè)區(qū)塊鏈技術(shù)應(yīng)用與合作合同集錦3篇
- 2024版事業(yè)單位續(xù)簽勞動合同申請書
- 2025年度物流運輸代理服務(wù)合同標(biāo)準(zhǔn)范本4篇
- 2025年度智能電網(wǎng)用電安全出租房屋合同范本4篇
- 2025年分公司設(shè)立與市場開發(fā)合作協(xié)議書4篇
- 建筑垃圾再利用可行性研究報告x
- 2025年電子商務(wù)平臺租賃續(xù)租服務(wù)協(xié)議3篇
- TD/T 1060-2021 自然資源分等定級通則(正式版)
- 人教版二年級下冊口算題大全1000道可打印帶答案
- 《創(chuàng)傷失血性休克中國急診專家共識(2023)》解讀
- 倉庫智能化建設(shè)方案
- 海外市場開拓計劃
- 2024年度國家社會科學(xué)基金項目課題指南
- 供應(yīng)鏈組織架構(gòu)與職能設(shè)置
- 幼兒數(shù)學(xué)益智圖形連線題100題(含完整答案)
- 2024年九省聯(lián)考新高考 數(shù)學(xué)試卷(含答案解析)
- 紅色歷史研學(xué)旅行課程設(shè)計
- 如何避免護理患者投訴
評論
0/150
提交評論