




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年甘肅省靜寧縣一中高二數(shù)學第一學期期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《萊因德紙草書》是世界上最古老的數(shù)學著作之一,書中有一道這樣的類似問題:把150個完全相同的面包分給5個人,使每個人所得面包數(shù)成等差數(shù)列,且使較大的三份面包數(shù)之和的是較小的兩份之和,則最大的那份面包數(shù)為()A.30 B.40C.50 D.602.下列結(jié)論中正確的個數(shù)為()①,;②;③A.0 B.1C.2 D.33.已知等比數(shù)列的前n項和為,若,,則()A.250 B.210C.160 D.904.一盒子里有黑色、紅色、綠色的球各一個,現(xiàn)從中選出一個球.事件選出的球是紅色,事件選出的球是綠色.則事件與事件()A.是互斥事件,不是對立事件 B.是對立事件,不是互斥事件C.既是互斥事件,也是對立事件 D.既不是互斥事件也不是對立事件5.若拋物線的焦點與橢圓的左焦點重合,則m的值為()A.4 B.-4C.2 D.-26.在空間直角坐標系中,點關于原點對稱的點的坐標為()A. B.C. D.7.已知,若,則()A. B.C. D.8.已知動點滿足,則動點的軌跡是()A.橢圓 B.直線C.線段 D.圓9.已知條件,條件表示焦點在x軸上的橢圓,則p是q的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既非充分也非必要條件10.已知橢圓與雙曲線有相同的焦點,且它們的離心率之積為1,則橢圓的標準方程為()A. B.C. D.11.在空間直角坐標系中,若,,則()A. B.C. D.12.小明騎車上學,開始時勻速行駛,途中因交通堵塞停留了一段時間,后為了趕時間加快速度行駛.與以上事件吻合得最好的圖象是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),,對一切,恒成立,則實數(shù)的取值范圍為________.14.已知函數(shù),則___________.15.曲線的長度為____________.16.曲線在點處的切線方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓的左、右焦點分別為,.點滿足.(1)求橢圓的離心率;(2)設直線與橢圓相交于,兩點,若直線與圓相交于,兩點,且,求橢圓的方程.18.(12分)已知橢圓:的左、右焦點分別為,,離心率為,且過點.(1)求橢圓的標準方程;(2)若過點的直線與橢圓相交于,兩點(A、B非橢圓頂點),求的最大值.19.(12分)已知橢圓,其焦點為,,離心率為,若點滿足.(1)求橢圓的方程;(2)若直線與橢圓交于兩點,為坐標原點,的重心滿足:,求實數(shù)的取值范圍.20.(12分)已知圓,直線(1)判斷直線l與圓C的位置關系;(2)過點作圓C的切線,求切線的方程21.(12分)已知等差數(shù)列的前項和滿足,.(1)求的通項公式;(2)設,求數(shù)列的前n項和.22.(10分)年世界人工智能大會已于年月在上海徐匯西岸舉行,某高校的志愿者服務小組受大會展示項目的啟發(fā),會后決定開發(fā)一款“貓捉老鼠”的游戲.如圖所示,、兩個信號源相距米,是的中點,過點的直線與直線的夾角為,機器貓在直線上運動,機器鼠的運動軌跡始終滿足:接收到點的信號比接收到點的信號晚秒(注:信號每秒傳播米).在時刻時,測得機器鼠距離點為米.(1)以為原點,直線為軸建立平面直角坐標系(如圖),求時刻時機器鼠所在位置的坐標;(2)游戲設定:機器鼠在距離直線不超過米的區(qū)域運動時,有“被抓”的風險.如果機器鼠保持目前的運動軌跡不變,是否有“被抓”風險?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)題意得到遞增等差數(shù)列中,,,從而化成基本量,進行計算,再計算出,得到答案.【詳解】根據(jù)題意,設遞增等差數(shù)列,首項為,公差,則所以解得所以最大項.故選:C2、C【解析】構(gòu)造函數(shù)利用導數(shù)說明函數(shù)的單調(diào)性,即可判斷大小,從而得解;【詳解】解:令,,則,所以在上單調(diào)遞增,所以,即,即,,故①正確;令,,則,所以當時,,當時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即恒成立,所以,故②正確;令,,當時,當時,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以,當且僅當時取等號,故③錯誤;故選:C3、B【解析】設為等比數(shù)列,由此利用等比數(shù)列的前項和為能求出結(jié)果【詳解】設,等比數(shù)列的前項和為為等比數(shù)列,為等比數(shù)列,解得故選:B4、A【解析】根據(jù)事件的關系進行判斷即可.【詳解】由題意可知,事件與為互斥事件,但事件不是必然事件,所以,事件與事件是互斥事件,不是對立事件.故選:A.【點睛】本題考查事件關系的判斷,考查互斥事件和對立事件概率的理解,屬于基礎題.5、B【解析】根據(jù)拋物線和橢圓焦點與其各自標準方程的關系即可求解.【詳解】由題可知拋物線焦點為,橢圓左焦點為,∴.故選:B.6、C【解析】根據(jù)點關于原點對稱的性質(zhì)即可知答案.【詳解】由點關于原點對稱,則對稱點坐標為該點對應坐標的相反數(shù),所以.故選:C7、B【解析】先求出的坐標,然后由可得,再根據(jù)向量數(shù)量積的坐標運算求解即可.【詳解】因為,,所以,因為,所以,即,解得.故選:B8、C【解析】根據(jù)兩點之間的距離公式的幾何意義即可判定出動點軌跡.【詳解】由題意可知表示動點到點和點的距離之和等于,又因為點和點的距離等于,所以動點的軌跡為線段.故選:9、A【解析】根據(jù)條件,求得a的范圍,根據(jù)充分、必要條件的定義,即可得答案.【詳解】因為條件表示焦點在x軸上的橢圓,所以,解得或,所以條件是條件q:或的充分不必要條件.故選:A10、A【解析】計算雙曲線的焦點為,離心率,得到橢圓的焦點為,離心率,計算得到答案.【詳解】雙曲線的焦點為,離心率,故橢圓的焦點為,離心率,即.解得,故橢圓標準方程為:.故選:.【點睛】本題考查了橢圓和雙曲線的離心率,焦點,橢圓的標準方程,意在考查學生的計算能力.11、B【解析】直接利用空間向量的坐標運算求解.【詳解】解:因為,,所以.故選:B12、C【解析】先研究四個選項中圖象的特征,再對照小明上學路上的運動特征,兩者對應即可選出正確選項.【詳解】考查四個選項,橫坐標表示時間,縱坐標表示的是離開學校的距離,由此知,此函數(shù)圖象一定是下降的,由此排除A;再由小明騎車上學,開始時勻速行駛可得出圖象開始一段是直線下降型,又途中因交通堵塞停留了一段時間,故此時有一段函數(shù)圖象與x軸平行,由此排除D,之后為了趕時間加快速度行駛,此一段時間段內(nèi)函數(shù)圖象下降的比較快,由此可確定C正確,B不正確故選C【點睛】本題考查函數(shù)的表示方法,關鍵是理解坐標系的度量與小明上學的運動特征,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】通過分離參數(shù),得到關于x的不等式;再構(gòu)造函數(shù),通過導數(shù)求得函數(shù)的最值,進而求得a的取值范圍【詳解】因為,代入解析式可得分離參數(shù)a可得令()則,令解得所以當0<x<1,,所以h(x)在(0,1)上單調(diào)遞減當1<x,,所以h(x)在(1,+∞)上單調(diào)遞增,所以h(x)在x=1時取得極小值,也即最小值所以h(x)≥h(1)=4因為對一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4所以a的取值范圍為【點睛】本題綜合考查了函數(shù)與導數(shù)的應用,分離參數(shù)法,利用導數(shù)求函數(shù)的最值,屬于中檔題14、【解析】先求導數(shù),代入可得.【詳解】因為所以,則,故.故答案為:15、【解析】曲線的圖形是:以原點為圓心,以2為半徑的圓的左半圓,進而可求出結(jié)果.【詳解】解:由得,所以曲線()的圖形是:以原點為圓心,以2為半徑的圓的左半圓,∴曲線()的長度是,故答案為:.16、【解析】求導后令求出切線斜率,即可寫出切線方程.【詳解】由題意知:,當時,,故切線方程為,即.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由及兩點間距離公式可建立等式,消去b,即可求解出,主要兩個根的的要舍去;(2)聯(lián)立直線和橢圓的方程,利用弦長公式求得,再利用幾何關系求得,代入,可解得c,從而得到橢圓的方程.【詳解】(1)設,,因為,所以,整理得,得(舍),或,所以;(2)由(1)知,,可得橢圓方程為,直線的方程為,A,B兩點的坐標滿足方程組為,消去y并整理,得,解得:,,得方程組的解和,不妨設:,,所以,于是,圓心到直線的距離為,因為,所以,整理得:,得(舍),或,所以橢圓方程為:.【點睛】關鍵點點睛:本題考查求橢圓的離心率解題關鍵是找到關于a,b,c的等量關系,第二問的關鍵是聯(lián)立直線與橢圓方程求出交點坐標,利用距離公式建立等量關系,求出c是求出橢圓方程的關鍵.18、(1)(2)【解析】(1)根據(jù)離心率和點在橢圓上建立方程,結(jié)合,然后解出方程即可(2)設直線的斜率為,聯(lián)立直線與橢圓的方程,然后利用韋達定理表示出,兩點的坐標關系,并表示出為直線斜率的函數(shù),然后求出的最大值【小問1詳解】由橢圓過點,則有:由可得:解得:則橢圓的方程為:【小問2詳解】由(1)得,,已知直線不過橢圓長軸頂點則直線的斜率不為,設直線的方程為:設,,聯(lián)立直線方程和橢圓方程整理可得:故是恒成立的根據(jù)韋達定理可得:,則有:由,可得:所以的最大值為:19、(1)(2)【解析】(1)運用橢圓的離心率公式,結(jié)合橢圓的定義可得在橢圓上,代入橢圓方程,求出,,即可求橢圓的方程;(2)設出直線方程,聯(lián)立直線和橢圓方程,利用根與系數(shù)之間的關系、以及向量數(shù)量積的坐標表示進行求解即可.【小問1詳解】依題意得,點,滿足,可得在橢圓上,可得:,且,解得,,所以橢圓的方程為;【小問2詳解】設,,,,,,當時,,此時A,B關于y軸對稱,則重心為,由得:,則,此時與橢圓不會有兩交點,故不合題意,故;聯(lián)立與橢圓方程,可得,可得,化為,,,①,設的重心,由,可得②由重心公式可得,代入②式,整理可得可得③①式代入③式并整理得,則,,令,則,可得,,,.【點睛】本題主要考查橢圓的方程以及直線和橢圓的位置關系的應用,利用消元法轉(zhuǎn)化為一元二次方程形式是解決本題的關鍵.20、(1)相交.(2)或.【解析】(1)先判斷出直線恒過定點(2,1),由(2,1)在圓內(nèi),即可判斷;(2)分斜率存在與不存在兩種情況,利用幾何法求解.【小問1詳解】直線方程,即,則直線恒過定點(2,1).因為,則點(2,1)位于圓的內(nèi)部,故直線與圓相交.【小問2詳解】直線斜率不存在時,直線滿足題意;②直線斜率存在的時候,設直線方程為,即.因為直線與圓相切,所以圓心到直線的距離等于半徑,即,解得:,則直線方程為:.綜上可得,直線方程或.21、(1)(2)【解析】(1)根據(jù)已知求出首項和公差即可求出;(2)利用裂項相消法求解即可.【小問1詳解】設等差數(shù)列的公差為,因為,所以,化簡得,解得,所以【小問2詳解】由(1)可知,所以,所以.22、(1);(2)沒有.【解析】(1)設機器鼠位置為點,由題意可得,即,可得的軌跡為以、為焦點的雙曲線的右支,分析取值,即得解雙曲線的方程,由可得P點坐標.(2)轉(zhuǎn)化機器鼠與直線最近的距離為與直線平行的直線與雙
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 3《月是故鄉(xiāng)明》教學設計-2023-2024學年五年級下冊語文統(tǒng)編版
- 2023七年級數(shù)學下冊 第一章 整式的乘除6 完全平方公式第2課時 完全平方公式的應用教學設計 (新版)北師大版
- 3《不懂就要問》教學設計2024-2025學年統(tǒng)編版語文三年級上冊
- 11白樺(教學設計)-2023-2024學年統(tǒng)編版語文四年級下冊
- 《平行與垂直》(教學設計)-2024-2025學年四年級上冊數(shù)學人教版
- 6《加快溶解》教學設計-2023-2024學年科學三年級上冊教科版
- 《第10課 問題的分解》教學設計教學反思-2023-2024學年小學信息技術浙教版23五年級上冊
- 規(guī)范經(jīng)營管理培訓課件
- 腹膜透析導管感染的護理
- 1《讓目標導航學習》(教學設計)-魯畫版心理健康五年級上冊
- 湖南省2025屆高三九校聯(lián)盟第二次聯(lián)考歷史試卷(含答案解析)
- 2024年全國職業(yè)院校技能大賽(高職組)安徽省集訓選拔賽“電子商務”賽項規(guī)程
- 2025年中考數(shù)學復習:翻折問題(含解析)
- (統(tǒng)編版2025新教材)語文七下全冊知識點
- 家具全屋定制的成本核算示例-成本實操
- 第二單元第1課《精彩瞬間》第2課時 課件-七年級美術下冊(人教版2024)
- 暈針暈血的處理及預防
- 放射科危急值報告流程質(zhì)量控制方案
- 2023-2024學年江蘇南京江寧區(qū)七年級下冊語文期中試卷及答案A卷
- 設備銷售合同三方協(xié)議(2025年)
- 安恒可信數(shù)據(jù)空間建設方案 2024
評論
0/150
提交評論