版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年湖南省祁東縣第一中學數學高二上期末質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知在一次降雨過程中,某地降雨量(單位:mm)與時間t(單位:min)的函數關系可表示為,則在時的瞬時降雨強度為()mm/min.A. B.C.20 D.4002.原點到直線的距離的最大值為()A. B.C. D.3.已知,則“”是“直線與平行”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知空間向量,,若,則實數的值是()A. B.0C.1 D.25.在的展開式中,只有第4項的二項式系數最大,且所有項的系數和為0,則含的項的系數為()A.-20 B.-15C.-6 D.156.將直線2x-y+λ=0沿x軸向左平移1個單位,所得直線與圓x2+y2+2x-4y=0相切,則實數λ值為()A.-3或7 B.-2或8C0或10 D.1或117.過點(1,0)且與直線x-2y-2=0平行的直線方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=08.如圖,在四面體中,,,,分別為,,,的中點,則化簡的結果為()A. B.C. D.9.的二項展開式中,二項式系數最大的項是第()項.A.6 B.5C.4和6 D.5和710.2021年11月,鄭州二七罷工紀念塔入選全國職工愛國主義教育基地名單.某數學建模小組為測量塔的高度,獲得了以下數據:甲同學在二七廣場A地測得紀念塔頂D的仰角為45°,乙同學在二七廣場B地測得紀念塔頂D的仰角為30°,塔底為C,(A,B,C在同一水平面上,平面ABC),測得,,則紀念塔的高CD為()A.40m B.63mC.m D.m11.已知雙曲線離心率為2,過點的直線與雙曲線C交于A,B兩點,且點P恰好是弦的中點,則直線的方程為()A. B.C. D.12.橢圓的短軸長為()A.8 B.2C.4 D.二、填空題:本題共4小題,每小題5分,共20分。13.定義離心率是的橢圓為“黃金橢圓”.已知橢圓是“黃金橢圓”,則_________.若“黃金橢圓”兩個焦點分別為、,P為橢圓C上的異于頂點的任意一點,點M是的內心,連接并延長交于點N,則________.14.已知拋物線的頂點為O,焦點為F,動點B在C上,若點B,O,F(xiàn)構成一個斜三角形,則______15.正四棱柱的高為底面邊長的倍,則其體對角線與底面所成角的大小為_________.16.已知點在拋物線上,那么點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列是公差不為0的等差數列,首項,且成等比數列(1)求數列的通項公式;(2)設數列滿足,求數列的前n項和18.(12分)已知,(1)若,p且q為真命題,求實數x的取值范圍;(2)若p是q的充分條件,求實數m的取值范圍19.(12分)如圖所示,在直四棱柱中,底面ABCD是菱形,點E,F(xiàn)分別在棱,上,且,(1)證明:點在平面BEF內;(2)若,,,求直線與平面BEF所成角的正弦值20.(12分)在中,(1)求的大??;(2)若,.求的面積21.(12分)已知函數在處取得極值確定a的值;若,討論的單調性22.(10分)設命題方程表示中心在原點,焦點在坐標軸上的雙曲線;命題,,若“”為假命題,“”為真命題,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】對題設函數求導,再求時對應的導數值,即可得答案.【詳解】由題設,,則,所以在時的瞬時降雨強度為mm/min.故選:B2、C【解析】求出直線過的定點,當時,原點到直線距離最大,則可求出原點到直線距離的最大值;【詳解】因為可化為,所以直線過直線與直線交點,聯(lián)立可得所以直線過定點,當時,原點到直線距離最大,最大距離即為,此時最大值為,故選:C.3、A【解析】首先由兩直線平行的充要條件求出參數的取值,再根據充分條件、必要條件的定義判斷即可;【詳解】因為直線與平行,所以,解得或,所以“”是“直線與平行”的充分不必要條件.故選:A.4、C【解析】根據空間向量垂直的性質進行求解即可.【詳解】因為,所以,因此有.故選:C5、C【解析】先由只有第4項的二項式系數最大,求出n=6;再由展開式的所有項的系數和為0,用賦值法求出,用通項公式求出的項的系數.【詳解】∵在的展開式中,只有第4項的二項式系數最大,∴在的展開式有7項,即n=6;而展開式的所有項的系數和為0,令x=1,代入,即,所以.∴是展開式的通項公式為:,要求含的項,只需,解得,所以系數為.故選:C6、A【解析】根據直線平移的規(guī)律,由直線2x﹣y+λ=0沿x軸向左平移1個單位得到平移后直線的方程,然后因為此直線與圓相切得到圓心到直線的距離等于半徑,利用點到直線的距離公式列出關于λ的方程,求出方程的解即可得到λ的值解:把圓的方程化為標準式方程得(x+1)2+(y﹣2)2=5,圓心坐標為(﹣1,2),半徑為,直線2x﹣y+λ=0沿x軸向左平移1個單位后所得的直線方程為2(x+1)﹣y+λ=0,因為該直線與圓相切,則圓心(﹣1,2)到直線的距離d==r=,化簡得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故選A考點:直線與圓的位置關系7、A【解析】設出直線方程,利用待定系數法得到結果.【詳解】設與直線平行的直線方程為,將點代入直線方程可得,解得則所求直線方程為.故A正確【點睛】本題主要考查兩直線的平行問題,屬容易題.兩直線平行傾斜角相等,所以斜率相等或均不存在.所以與直線平行的直線方程可設為8、C【解析】根據向量的加法和數乘的幾何意義,即可得到答案;【詳解】故選:C9、A【解析】由二項展開的中間項或中間兩項二項式系數最大可得解.【詳解】因為二項式展開式一共11項,其中中間項的二項式系數最大,易知當r=5時,最大,即二項展開式中,二項式系數最大的為第6項.故選:A10、B【解析】設,先表示出,再利用余弦定理即可求解.【詳解】如圖所示,,設塔高為,因為平面ABC,所以,所以,又,即,解得.故選:B.11、C【解析】運用點差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設,,則兩式相減得,即.又因為點P恰好是弦的中點,所以,,所以直線的斜率為,所以直線的方程為,即.經檢驗滿足題意故選:C12、C【解析】根據橢圓的標準方程求出,進而得出短軸長.【詳解】由,可得,所以短軸長為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】第一空,直接套入“黃金橢圓”新定義即可,第二空,從內切圓入手,找到等量關系,進而得到,求解即可【詳解】由題,,所以如圖,連接,設內切圓半徑為,則,即,∴,∴,∴∴,∴故答案為:;【點睛】本題從新定義出發(fā),第一空直接套用定義可得答案,第二空升華,需要在理解新定義的基礎上,借助內切圓的相關公式求解,層層遞進,是一道好題.關鍵點在于找到“”這一關系14、2【解析】畫出簡單示意圖,令,根據拋物線定義可得,應用數形結合及B在C上,求目標式的值.【詳解】如下圖,令,直線為拋物線準線,軸,由拋物線定義知:,又且,所以,故,又,故.故答案為:2.【點睛】關鍵點點睛:應用拋物線的定義將轉化為,再由三角函數的定義及點在拋物線上求值.15、##【解析】如圖所示,其體對角線與底面所成角為,解三角形即得解.【詳解】解:如圖所示,設,所以.由題得平面,則其體對角線與底面所成角為,因為,所以.故答案為:16、【解析】由拋物線定義可得,由此可知當為與拋物線的交點時,取得最小值,進而求得點坐標.【詳解】由題意得:拋物線焦點為,準線為作,垂直于準線,如下圖所示:由拋物線定義知:(當且僅當三點共線時取等號)即的最小值為,此時為與拋物線的交點故答案為【點睛】本題考查拋物線線上的點到焦點的距離與到定點距離之和最小的相關問題的求解,關鍵是能夠熟練應用拋物線定義確定最值取得的位置.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)設數列的公差為d,根據等比中項的概念即可求出公差,再根據等差數列的通項公式即可求出答案;(2)由(1)得,再根據分組求和法即可求出答案【詳解】解:(1)設數列的公差為d,由已知得,,即,解得或,又,∴,∴;(2)由(1)得,【點睛】本題主要考查等差數列的通項公式,考查數列的分組求和法,考查計算能力,屬于基礎題18、(1);(2).【解析】(1)解一元二次不等式可得命題p,q所對集合,再求交集作答.(2)求出命題q所對集合,再利用集合的包含關系列式計算作答.【小問1詳解】解不等式得:,則命題p所對集合,當時,解不等式得:,則命題q所對集合,由p且q為真命題,則,所以實數x的取值范圍是.【小問2詳解】解不等式得:,則命題q所對集合,因p是q的充分條件,則,于是得,解得,所以實數m的取值范圍是.19、(1)證明見解析;(2).【解析】(1)設、、、AC與BD的交點為O,由直四棱柱的性質構建空間直角坐標系,確定、的坐標可得,即可證結論.(2)由題設,求出、、的坐標,進而求得面BEF的法向量,利用空間向量夾角的坐標表示求直線與平面BEF所成角的正弦值【小問1詳解】由題意,,設,,,設AC與BD的交點為O,以O為坐標原點,分別以BD,AC所在直線為x,y軸建立如下空間直角坐標系,則,,,,所以,,得,即,因此點在平面BEF內【小問2詳解】由(1)及題設,,,,,所以,,設為平面BEF的法向量,則,令,即設直線與平面BEF所成角為,則20、(1)(2)【解析】(1)利用正弦定理將邊化角,再根據兩角和的正弦公式及誘導公式得到,即可得解;(2)首先由余弦定理求出,即可得到,再根據面積公式計算可得;【小問1詳解】解:因為,由正弦定理可得,即,又在中,,所以,,所以;【小問2詳解】解:由余弦定理得,即,解得,所以,又,所以;.21、(1)(2)在和內為減函數,在和內為增函數【解析】(1)對求導得,因為在處取得極值,所以,即,解得;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 七年級上冊人教版歷史知識點總結
- 2025健身房教練聘用合同
- 課題申報參考:領導差錯取向對科創(chuàng)企業(yè)雙元綠色創(chuàng)新的跨層次傳導及干預機制研究
- 跨文化教育中的創(chuàng)新教學方法探討
- 2024年壓敏熱熔膠項目資金需求報告代可行性研究報告
- 2024年核電站用過濾氈項目資金需求報告代可行性研究報告
- 趣味數學在辦公中的應用
- 中考生物一輪復習抓重點考典型專題19 生物的生殖和發(fā)育(含解析)
- 個人承包物業(yè)清潔維護服務合同2024年度3篇
- 2025年浙科版必修2物理下冊階段測試試卷含答案
- 衛(wèi)生服務個人基本信息表
- 醫(yī)學脂質的構成功能及分析專題課件
- 高技能人才培養(yǎng)的策略創(chuàng)新與實踐路徑
- 廣東省湛江市廉江市2023-2024學年八年級上學期期末考試數學試卷(含答案)
- 2024年湖北省知名中小學教聯(lián)體聯(lián)盟中考語文一模試卷
- 安徽省蕪湖市2023-2024學年高一上學期期末考試 生物 含解析
- 燃氣行業(yè)有限空間作業(yè)安全管理制度
- JB T 7946.1-2017鑄造鋁合金金相
- 包裝過程質量控制
- 通用電子嘉賓禮薄
- 赤峰市海業(yè)礦產有限責任公司福合元礦區(qū)銅鉬礦2022年度礦山地質環(huán)境治理與土地復墾方案
評論
0/150
提交評論