版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年廣東省惠州市惠東中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數(shù)列中,為其前項和,若.則()A. B.C. D.2.劉徽是一個偉大的數(shù)學(xué)家,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國寶貴的數(shù)學(xué)遺產(chǎn),他所提出的割圓術(shù)可以估算圓周率π,理論上能把π的值計算到任意精度.割圓術(shù)的第一步是求圓的內(nèi)接正六邊形的面積.若在圓內(nèi)隨機取一點,則此點取自該圓內(nèi)接正六邊形的概率是()A. B.C. D.3.函數(shù)的值域為()A. B.C. D.4.如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A,B,交其準線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為()A.y2=9x B.y2=6xC.y2=3x D.y2=x5.過坐標原點作直線的垂線,垂足為,則的取值范圍是()A. B.C. D.6.已知直線是圓的對稱軸,過點A作圓C的一條切線,切點為B,則|AB|=()A.1 B.2C.4 D.87.設(shè)等差數(shù)列的前n項和為,,公差為d,,,則下列結(jié)論不正確的是()A. B.當時,取得最大值C. D.使得成立的最大自然數(shù)n是158.拋擲一枚質(zhì)地均勻的骰子兩次,記{兩次的點數(shù)均為奇數(shù)},{兩次的點數(shù)之和為8},則()A. B.C. D.9.函數(shù)的圖象在點處的切線的傾斜角為()A. B.0C. D.110.已知數(shù)列的通項公式為,其前項和為,則滿足的的最小值為()A.30 B.31C.32 D.3311.若,,,則a,b,c與1的大小關(guān)系是()A. B.C. D.12.函數(shù)是偶函數(shù)且在上單調(diào)遞減,,則的解集為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在處的切線方程為_________14.若函數(shù)在(0,+∞)內(nèi)有且只有一個零點,則a的值為_____15.若,滿足約束條件,則的最大值為_____________16.已知數(shù)列的通項公式,則數(shù)列的前5項為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖1是一張長方形鐵片,,,,分別是,中點,,分別在邊,上,且,將它卷成一個圓柱的側(cè)面圖2,使與重合,與重合.(1)求證:平面;(2)求幾何體的體積.18.(12分)已知橢圓的離心率為,左、右焦點分別為,,過的直線交橢圓E于A,B兩點.當軸時,(1)求橢圓E的方程;(2)求的范圍19.(12分)已知a>0,b>0,a+b=1,求證:.20.(12分)解下列不等式:(1);(2).21.(12分)已知圓,圓,動圓與圓外切,且與圓內(nèi)切.(1)求動圓圓心的軌跡的方程,并說明軌跡是何種曲線;(2)設(shè)過點的直線與直線交于兩點,且滿足的面積是面積的一半,求的面積22.(10分)如圖,已知等腰梯形,,為等腰直角三角形,,把沿折起(1)當時,求證:;(2)當平面平面時,求平面與平面所成二面角的平面角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用等差數(shù)列的性質(zhì)和求和公式可求得的值.【詳解】由等差數(shù)列的性質(zhì)和求和公式可得.故選:C.2、B【解析】此點取自該圓內(nèi)接正六邊形的概率是正六邊形面積除以圓的面積,分別求出即可.【詳解】如圖,在單位圓中作其內(nèi)接正六邊形,該正六邊形是六個邊長等于半徑的正三角形,其面積,圓的面積為則所求概率.故選:B【點睛】此題考查幾何概率模型求解,關(guān)鍵在于準確求出正六邊形的面積和圓的面積.3、C【解析】根據(jù)基本不等式即可求出【詳解】因為,當且僅當時取等號,所以函數(shù)的值域為故選:C4、C【解析】過點A,B分別作準線的垂線,交準線于點E,D,設(shè)|BF|=a,利用拋物線的定義和平行線的性質(zhì)、直角三角形求解【詳解】如圖,過點A,B分別作準線的垂線,交準線于點E,D,設(shè)|BF|=a,則由已知得|BC|=2a,由拋物線定義得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因為|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,從而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此拋物線的方程為y2=3x,故選:C.5、D【解析】求出直線直線過的定點A,由題意可知垂足是落在以O(shè)A為直徑的圓上,由此可利用的幾何意義求得答案,【詳解】直線,即,令,解得,即直線過定點,由過坐標原點作直線的垂線,垂足為,可知:落在以O(shè)A為直徑的圓上,而以O(shè)A為直徑的圓為,如圖示:故可看作是圓上的點到原點距離的平方,而圓過原點,圓上點到原點的最遠距離為,但將原點坐標代入直線中,不成立,即直線l不過原點,所以不可能和原點重合,故,故選:D6、C【解析】首先將圓心坐標代入直線方程求出參數(shù)a,求得點A的坐標,由切線與圓的位置關(guān)系構(gòu)造直角三角形從而求得.【詳解】圓即,圓心為,半徑為r=3,由題意可知過圓的圓心,則,解得,點A坐標為,,切點為B則,故選:C【點睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.7、D【解析】根據(jù)等差數(shù)列等差中項的性質(zhì),求和公式及單調(diào)性分別判斷.【詳解】因為,,所以,則,故A正確;當時,取得最大值,故B正確;,故C正確;因為,,,所以使得成立的最大自然數(shù)是,故D錯誤.故選:D8、B【解析】利用條件概率公式進行求解.【詳解】,其中表示:兩次點數(shù)均為奇數(shù),且兩次點數(shù)之和為8,共有兩種情況,即,故,而,所以,故選:B9、A【解析】求出導(dǎo)函數(shù),計算得切線斜率,由斜率求得傾斜角【詳解】,設(shè)傾斜角為,則,,故選:A10、C【解析】由條件可得得出,再由解出的范圍,得出答案.【詳解】由,則由,即,即,所以所以滿足的的最小值為為32故選:C11、C【解析】根據(jù)條件構(gòu)造函數(shù),并求其導(dǎo)數(shù),判斷該函數(shù)的單調(diào)性,據(jù)此作出該函數(shù)的大致圖象,由圖象可判斷a,b,c與1的大小關(guān)系.【詳解】令,則當時,,當時,即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,而,由可知,故作出函數(shù)大致圖象如圖:由圖象易知,,故選:C.12、D【解析】分析可知函數(shù)在上為增函數(shù),且有,將所求不等式變形為,可得出關(guān)于實數(shù)的不等式,由此可解得實數(shù)的取值范圍.【詳解】因為函數(shù)是偶函數(shù)且在上單調(diào)遞減,則該函數(shù)在上為增函數(shù),且,由可得,所以,,可得或,解得或.因此,不等式的解集為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求得函數(shù)的導(dǎo)數(shù),得到且,結(jié)合直線的點斜式方程,即可求解.【詳解】由題意,函數(shù),可得,則且,所以函數(shù)在處的切線方程為,即,即切線方程為.故答案為:.14、a=3【解析】對函數(shù)進行求導(dǎo),分類討論函數(shù)單調(diào)性,根據(jù)單調(diào)性結(jié)合已知可以求出a的值.【詳解】∵函數(shù)在(0,+∞)內(nèi)有且只有一個零點,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①當a≤0時,f′(x)=2x(3x﹣a)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,f(0)=1,f(x)在(0,+∞)上沒有零點,舍去;②當a>0時,f′(x)=2x(3x﹣a)>0的解為x,∴f(x)在(0,)上遞減,在(,+∞)遞增,又f(x)只有一個零點,∴f()1=0,解得a=3故答案為:a=3【點睛】本題考查了利用導(dǎo)數(shù)研究已知函數(shù)的零點求參數(shù)取值問題,考查了分類討論和數(shù)學(xué)運算能力.15、6【解析】首先根據(jù)題中所給的約束條件,畫出相應(yīng)的可行域,再將目標函數(shù)化成斜截式,之后在圖中畫出直線,在上下移動的過程中,結(jié)合的幾何意義,可以發(fā)現(xiàn)直線過B點時取得最大值,聯(lián)立方程組,求得點B的坐標代入目標函數(shù)解析式,求得最大值.【詳解】根據(jù)題中所給的約束條件,畫出其對應(yīng)的可行域,如圖所示:由,可得,畫出直線,將其上下移動,結(jié)合的幾何意義,可知當直線在y軸截距最大時,z取得最大值,由,解得,此時,故答案為6.點睛:該題考查的是有關(guān)線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應(yīng)的可行域,之后根據(jù)目標函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標,代入求值,要明確目標函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.16、【解析】根據(jù)數(shù)列的通項公式可得答案.【詳解】因為,所以數(shù)列的前5項為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析.(2).【解析】(1)根據(jù)線面垂直的性質(zhì)和判定可得證;(2)作圓柱的母線,由平面幾何知識可得四邊形為平行四邊形,利用等體積法可求得,由幾何體的體積,可求得答案.【小問1詳解】證明:∵是直徑,∴,∵平面,平面,∴,∵平面,平面,,∴平面;【小問2詳解】如圖,作圓柱的母線,則,且,∴四邊形是平行四邊形,∴,且①又依題知,,,為底面圓的四等分點,∴,且②由①②知四邊形為平行四邊形,得,且,∴,∵到面的距離為,∴,所以幾何體的體積.18、(1)(2)【解析】(1)根據(jù)離心率及通徑長求出橢圓方程;(2)分直線AB斜率存在和斜率不存在兩種情況得到的范圍,進而得到答案.【小問1詳解】當軸時,取代入橢圓方程得:,得,所以,又,解得,,所以橢圓方程為【小問2詳解】由,記,當軸時,由(1)知:,所以,當AB斜率為k時,直線AB為,,消去y得,所以,,所以,綜上,的范圍是.19、見解析【解析】將代入式子,得到,,進而進行化簡,最后通過基本不等式證明問題.【詳解】∵,,,∴,.∴=,當且僅當,即時取“=”20、(1)(2)【解析】(1)利用十字相乘解題即可(2)利用分子分母同號為正,異號為負思想,注意討論分母不為0【小問1詳解】由題,即,解得或,即;【小問2詳解】由題,解得或,即21、(1)(2)或【解析】(1)設(shè)圓的半徑為,圓的半徑為,圓的半徑為,由題意,,從而可得,由橢圓的定義即可求解;(2)由題意,直線的斜率存在且不為0,設(shè),,聯(lián)立直線與橢圓方程,利用韋達定理及點為線段的中點,可得,利用弦長公式求出及到直線AB的距離即可得的面積.【小問1詳解】解:圓的圓心,半徑,圓的圓心,半徑,設(shè)圓的半徑為,由題意,,所以,由橢圓的定義可知,動圓圓心的軌跡是以,為焦點,長軸長為的橢圓,則,所以,所以動圓圓心的軌跡的方程為;【小問2詳解】解:由題意,直線的斜率存在且不為0,設(shè),,由,可得,所以①,②,且,即,因為的面積是面積的一半,所以點為線段的中點,所以,即③,聯(lián)立①②③可得,所以,因為到直線AB的距離,,所以,所以當時,,當時,.所以的面積為或.22、(1)證明見解析(2)【解析】(1)取的中點E,連,證明四邊形為平行四邊形,從而可得為等邊三角形,四邊形為菱形,從而可證,,即可得平面,再根據(jù)線面垂直的性質(zhì)即可得證;(2)取的中點M,連
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 腳手架搭設(shè)專項施工方案
- 個人小額無抵押借款合同協(xié)議書
- 結(jié)束協(xié)議房地產(chǎn)代理合同
- 蔬菜營銷策略購買合同
- 瓷磚訂購合同模板
- 電子元件采購合同范本
- 購銷紡織品的合同樣本
- 校園多媒體設(shè)備招標文件
- 網(wǎng)絡(luò)購銷合同規(guī)范化管理的方法與策略
- 農(nóng)資采購合同的效力問題
- 2024年秋期國家開放大學(xué)《0-3歲嬰幼兒的保育與教育》大作業(yè)及答案
- 2024年就業(yè)保障型定向委培合同3篇
- 2024滬粵版八年級上冊物理期末復(fù)習(xí)全冊知識點考點提綱
- 人教版2024-2025學(xué)年第一學(xué)期八年級物理期末綜合復(fù)習(xí)練習(xí)卷(含答案)
- 殘聯(lián)內(nèi)部審計計劃方案
- 2024-2030年中國漫畫行業(yè)發(fā)展趨勢與投資戰(zhàn)略研究研究報告
- 儺戲面具制作課程設(shè)計
- 2024年大學(xué)生安全知識競賽題庫及答案(共190題)
- 2024中國華電集團限公司校招+社招高頻難、易錯點練習(xí)500題附帶答案詳解
- 吊裝作業(yè)施工方案
- 智能工廠梯度培育行動實施方案
評論
0/150
提交評論