版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
CEPRPOLICYINSIGHTNo.123
October2023
CanweHavePro-WorkerAI?
Choosingapathofmachinesinserviceofminds
DaronAcemoglu,DavidAutor,andSimonJohnson1
MassachusettsInstituteofTechnologyandCEPR
Summary
?Overthepast40years,thediffusionofdigitaltechnologiessignificantlyincreasedincomeinequality.
?GenerativeArtificialIntelligence(AI)willsurelyimpactinequality,butthenatureofthateffectdependsonexactlyhowthistechnologyisdevelopedandapplied.Nothingaboutthepathofthis(orany)technologyisinevitable.
?TheprivatesectorispursuingapathforgenerativeAIthatemphasisesautomationandthedisplacementoflabour,alongwithintrusiveworkplacesurveillance.
?Simplydisplacingworkersisnevergoodforthelabourmarket,evenwhenthedisplacedarehighlypaid.Displacedformerlyhigh-paidworkersareforcedtocompeteforjobswithlower-wageworkers,leadingtoadownwardcascadeinwagelevels.
?Abetterpathisavailable,alongwhichgenerativeAIwouldbecomplementarytomosthumans-augmentingtheircapabilities-includingpeoplewithoutafour-yearcollegedegree.
?Choosingthehuman-complementarypathisfeasiblebutwillrequirechangesinthedirectionoftechnologicalinnovation,aswellasincorporatenormsandbehaviour.
?ThegoalshouldbetodeploygenerativeAItocreateandsupportnewoccupationaltasksandnewcapabilitiesforworkers.IfAItoolscanenableteachers,nursepractitioners,nurses,medicaltechnicians,electricians,plumbers,andothermoderncraftworkerstodomoreexpertwork,thiscanreduceinequality,raiseproductivity,andboostpaybylevellingworkersup.
?Publicpolicyhasacentralroleinencouragingthispositivepathoftechnologytocomplementallworkers,elevatingtheachievablelevelofskillandexpertiseforeveryone.
1Theauthorsareco-directorsoftheMITShapingtheFutureofWorkInitiative,whichwasestablishedthrougha
generousgiftfromtheHewlettFoundation.Thisresearchprogramandrelatedresultswerealsomadepossiblewith
thesupportoftheNOMISFoundation.Acemoglu:InstituteProfessor,MIT;Autor:FordProfessorofEconomics,
MITDepartmentofEconomics;Johnson:KurtzProfessorofEntrepreneurship,MITSloanSchoolofManagement.
Relevantdisclosuresareavailableat
/power-and-progress
,under“PolicySummary.”.
CEPRPOLICYINSIGHTNo.123October2023
2
?Atthistime,thefivemostimportantfederalpoliciesshouldbe:
1.Equalisetaxratesonemployingworkersandonowningequipment/algorithmstoleveltheplayingfieldbetweenpeopleandmachines.
2.UpdateOccupationalSafetyandHealthAdministrationrulestocreatesafeguards(i.e.limitations)onthesurveillanceofworkers.Findingwaystoelevateworkervoiceonthedirectionofdevelopmentcouldalsobehelpful.
3.Increasefundingforhuman-complementarytechnologyresearch,recognisingthatthisisnotcurrentlyaprivatesectorpriority.
4.CreateanAIcentreofexpertisewithinthegovernment,tohelpshareknowledgeamongregulatorsandotherofficials.
5.Usethatfederalexpertisetoadviseonwhetherpurportedhuman-complementarytechnologyisappropriatetoadoptinpubliclyprovided
educationandhealthcareprogrammes,includingatthestateandlocallevel.
Introduction
TheworldisabouttoexperiencetransformativeanddisruptiveadvancesingenerativeArtificialIntelligence.Amajorsetofconcernscentresaroundthelabourmarketandeconomicinequalityimplicationsoftheseadvances.WillAIeliminatejobsinnet?Willitfurtherinflamethedecades-longphenomenonofrisingeconomicinequality?Willitboostlabourearningsorinsteadmakemachinesmorevaluableandworkersmoreexpendable?
Theconsensusintheeconomicliteratureisthatpreviouswavesofdigitaltechnologies–includingpersonalcomputers,numericallycontrolledmachinery,robotics,andofficeautomation–haveincreasedinequality.Thisisbothbecausesomeofthesetechnologies,suchaspersonalcomputers,havebeenhighlycomplementarytomore-educatedworkers(Autoretal.1998,Autoretal.2003,GoldinandKatz2008),andalsobecausemanyofthesetoolshavebeenusedforautomatingwork,withanunequalimpactondifferenttypesofworkers(Autoretal.2003,AcemogluandRestrepo2022a,2022b).Whiledigitaltechnologieshaveundoubtedlycreatednewgoods/servicesandboostedproductivityinsomeactivities(e.g.BrynjolfssonandMcAfee2015),thereisalsoevidencethatproductivitygainsfromthesetechnologieshavesometimesfallenwellbelowexpectations(e.g.Acemogluetal.2016).
GenerativeAIwillhaveasubstantialimpactonthefutureofworkandthetrajectoryofinequality.ThenatureofthatimpactisnotaninevitableconsequenceofthetechnologyitselfbutinsteaddependsonhowsocietydevelopsandshapesAI.
?ThecurrentlypredominantdirectionforAIemphasisesautomation,displacementofskilledlabour,anddiminishedworkervoiceduetostepped-upmonitoringandsurveillance.
?Analternative,“human-complementary”pathcouldcontributemoretoproductivitygrowthandcouldhelpreduceeconomicinequality.
Inthenextsection,weoutlinewhattheautomationpathlookslikeandwhatitsimplicationswouldbeforwork,inequality,andproductivity.Wethendescribethealternativehuman-complementarypath,drawingonbothgeneralprinciplesandspecificexamples.Wealsoexplainwhy,despiteitsadvantages,thehuman-complementaryapproachisnotlikelytoprevailbasedoncurrentinvestmentsandcorporateattitudes.WesuggestpoliciesthatcouldhelpsteerAIdevelopmentandimplementationinthemoreconstructivedirection.
CEPRPOLICYINSIGHTNo.123October2023
3
THEAUTOMATIONPATH
Automation–thesubstitutionofmachinesand,morerecently,algorithmsfortaskspreviouslyperformedbyhumans–hasbeenaconstantsinceatleastthebeginningoftheIndustrialRevolution.Machinesweredevelopedtoperformtasksthathaveahighdegreeofpredictabilityandarecarriedoutinstableenvironments.Examplesincludespinningandweavingintheeighteenth-centurytextileindustry,harvestinginnineteenth-centuryagriculture,andmanyofficeandclericaltasksinthetwentiethcentury,suchastelephoneswitchboardoperationandroutinebookkeeping.Massproduction,whichvastlyreducedthecostofeverydayproducts,dependsfundamentally–thoughnotexclusively–onassemblylinesmadepossiblebyautomation.
Notallautomationishighlyproductive,however.Whenmachinesaredeployedtoperformtasksinwhichtheyarenotparticularlyeffective,lacklustreproductivitygainsfollow.Mostpeoplearefamiliarwiththefrustrationofseekingcustomerservicefromanairline,creditcardprovider,orcomputermanufacturer,onlytobedivertedthroughmazesofunhelpfulcomputermenus.Firmsmayfindsuchautomationtobecost-effective,butitisnotameaningfulproductivityadvance.
Whetherithaslargeorsmalleffectsonproductivity,automationtendstohavemajordistributionalconsequences.Thereasonisthatautomationdisplacesworkerswhowerespecialisedinthetasksthatautomationreallocatestomachinesandalgorithms.Theautomationofblue-collarandofficejobsusingdigitaltechnologieshasbeenanimportantdriveroftheriseininequalitysince1980(AcemogluandRestrepo2022a).
ItisinevitablethatAIsystemswillbeusedforsomeautomation,bothfortechnicalandbusinessstrategyreasons.Onthetechnicalfront,amajorbarriertoautomationofmanyserviceandproductiontaskshasbeenthattheyrequireflexibility,judgment,andcommonsense–thingsthatarenotablyabsentfrompre-AIformsofautomation.Artificialintelligence,especiallygenerativeAI,canpotentiallymastersuchtasks(Susskind2021).AbroadswathofcomputersecuritytasksthatusedtobeperformedbyskilledhumanoperatorscannowbeperformedbyAIbots.Similarly,generativeAIsystemscanwriteadvertisingcopy,parselegaldocuments,transcribephysicians’medicalnotes,andperformlanguagetranslation.Itisunclearhowmuchthistypeofautomationwillcontributetoaggregateproductivitygrowthwhilethesetechnologiesareimmature,buttheycouldcontributetosizeableproductivitygainsascostsfallandreliabilityimproves.
Businessesmaychoosemachinesoverworkersforreasonsotherthanproductivity.Automationappealstomanagerswhoareseekinggreaterconsistencyandlessoppositionfromorganisedorunorganisedlabour(AcemogluandJohnson2023).
Alltoooften,businessesprefertofocusonautomationratherthancreatingnewjobtasksandenablingworkerstobuildnewskills.Automationisalwaysaneasycaseforamanagertomakebecauseitappearstosavecosts.Investingtomakeworkersmoreproductiveormoreusefulmaybeahardersell,sinceit’sseenasmessy,uncertain,andexpensive.Somemanagerssimplypreferto“hiremachines”,ratherthanhiringworkers,becausemachinesdon’tcomplainaboutpayorworkingconditions,andtheycertainlydon’tjoinunions.Butacountryisnotabusiness.Wehaveasharedinterestinensuringthatadultsareproductivelyemployed.Thispromoteseconomicresilience,socialcohesion,andastrongtaxbase.Policymakerscaremoreaboutthequalityandquantityofjobsthandoemployers,andpolicyshouldsupportinstitutions,incentives,andinvestmentswiththisinmind.
CEPRPOLICYINSIGHTNo.123October2023
4
Beyondeconomicincentives,thedominantintellectualparadigmintoday’sdigitaltechsector–amongbothbusinessleadersandacademicresearchers–favourstheautomationpath.AmajorfocusofAIresearchistoattainhumanparityinavastrangeofcognitivetasksand,moregenerally,toachieve“artificialgeneralintelligence”thatfullymimicsandthensurpassescapabilitiesofthehumanmind.Thisintellectualfocusencouragesautomationratherthanthedevelopmentofhuman-complementarytechnologies(AcemogluandJohnson2023).
Thereisawidelysharedoptimismthathuman-replacingautomationwillproducesomuchproductivitygainthatalltypesofworkerswillbenefit.Itistruethatifautomationissufficientlyproductive(andthusreducescostsbyasignificantamount),thiscangeneratedemandforothergoodsandservicesand,asaresult,workersmaybenefitaswell.
However,whileproductivitygainsareobviouslywelcome,therearetwoproblemswiththislineofthought.First,thebenefitsmaybehighlyunequallydistributedacrossdifferentskillgroups.Forexample,AI-basedproductivitygainsmightincreasethedemandforso-called“promptengineers”,butthiswouldnothelpworkersdisplacedfromaccountingorfinancialservicesjobs–assumingtheydonothaveacomparativeadvantageinpromptengineering(AcemogluandAutor2011,AcemogluandRestrepo2022a).Second,automationtendstoreducethelabourshareofnationalincome,soevenifworkersbenefit,mostofthegainsflowtoentrepreneursandcapitalowners(AcemogluandRestrepo2018).Therearelimitstohowmuchsharedprosperitycanbegeneratedexclusivelybyautomation.
Anothercommonpredictionisthat,becausegenerativeAImayautomatemanagerialorknowledgetaskstypicallyperformedbyprofessionalworkers,itcouldhaveequalisingeffects.Forinstance,ifaccountantsandfinancialanalystslosetheirjobs,thismightreduceinequalitybetweenretailworkersandhighlypaidfinancialsectorworkers.Thislogicisfaulty.Studiesofpreviouswavesofdigitalautomationshowthatworkersdirectlydisplacedbynewtechnologiesnotonlyexperiencelowerpaygrowthbutalsostartcompetingwithothergroupsoflower-paidworkers,whosepaythendeclines(e.g.AcemogluandRestrepo2022a).Simplyput,displacingworkerswillneverbegoodforworkersorforthelabourmarket.Instead,AIcanreduceinequalityifitenableslower-rankedworkerstoperformmorevaluablework–butnotifitmerelyknocksrungsoutoftheexistingjobladder.
TheHumanComplementaryPath
Newtechnologiesneednotmerelyreplaceworkersinexistingtasks.Theymayalsocomplementworkersbyenablingthemtoworkmoreefficiently,performhigher-qualitywork,oraccomplishnewtasksthatwerepreviouslyinfeasible(AcemogluandRestrepo2018,Autoretal.2022,AcemogluandJohnson2023).Forexample,evenasmechanisationgraduallypushedmorethanhalfoftheUSlabourforceoutofagriculture,arangeofnewblue-collarandclericaltasksinfactoriesandnewlyemergingserviceindustriesgeneratedsignificantdemandforskilledlabour.Theexpansionofemploymentinindustryandservicesbetween(roughly)theyears1870and1970ledtoworkthatwasnotonlybetterpaidbutalsolessdangerousandlessphysicallyexhausting,andincreasinglyrewardedtheformalliteracyandnumeracyskillscreatedbytheexpansionofuniversalpublichighschooleducation.
Thisvirtuouscombination-automationoftraditionalworkalongsidecreationofnewtasks–proceededinrelativebalanceformuchofthetwentiethcentury.Butsometimeafterapproximately1970,thisbalancewaslost.Whileautomationhasmaintaineditspaceorevenacceleratedovertheensuingfivedecades,theoffsettingforceofnew
CEPRPOLICYINSIGHTNo.123October2023
5
taskcreationhasslowed,particularlyforworkerswithoutfour-yearcollegedegrees(AcemogluandRestrepo2019,Autoretal.2022).Non-collegeworkershavebeendisplacedfromfactoriesandofficesbycomputerisationand,forblue-collarworkers,alsobyimportcompetition(Autoretal.2013),butnonewequivalentlywell-paidopportunitieshaveemergedtoattracttheseworkers.Asaresult,non-collegeeducatedworkersareincreasinglyfoundinlow-paidservicessuchascleaning,security,foodservice,recreation,andentertainment.Thesejobsaresociallyvaluable,buttheyrequirelittlespecialisededucation,training,orexpertise,andhencepaypoorly.
ThecriticalquestionwefaceintheneweraofgenerativeAIiswhetherthistechnologywillprimarilyacceleratetheexistingtrendofautomationwithouttheoffsettingforceofgoodjobcreation–particularlyfornon-collegeworkers–orwhetheritwillinsteadenabletheintroductionofnewlabour-complementarytasksforworkerswithdiverseskillsetsandawiderangeofeducationalbackgrounds.
Thereisacaseforqualifiedoptimism:generativeAIoffersanopportunitytocomplementworkerskillandexpertise.
Becausesomanyoftheroutinetasksthatworkerspreviouslyperformedhavealreadybeenautomated,alargefractionofcurrentjobsrequirenon-routineproblem-solvinganddecision-makingtasks.Empoweringworkerstoperformthesetasksmoreeffectively,andtoaccomplishevenmoresophisticateddecision-makingtasks,willrequireprovidingworkerswithbetterinformationanddecision-supporttools.GenerativeAIisparticularlywell-suitedtothistypeofinformationprovision.Anironyoftoday’sinformationeraisthatpeopleareoverwhelmedbyinformationbutoftenlackthetimeandexpertisetoparsethisinformationeffectively.GenerativeAIisparticularlywell-suitedtoaddressthisproblem.Withproperdevelopment,AItoolscanhelpsurfacerelevantinformationattherighttimetoenablebetterdecision-making.
Additionally,andcloselyrelated,humanproductivityisoftenhamperedbylackofspecificknowledgeorexpertise,whichcouldbereadilysupplementedbyAI.Forexample,anelectricianmightbeunabletodiagnosearareproblemthatshecouldreadilyaddressifgivenrelevanttoolsorappropriatetraining.OrahighlytrainedimmigranttotheUSmaybeinhibitedfromfullyusingherabilitiesbecauseoflimitedEnglishlanguageskills.GenerativeAItoolscanassistinsuchcasesbyboostinghumanexpertise,supportingworkersinunfamiliarsituations,providingon-the-spottraining,andimprovingallformsofinformationtranslation.Overall,AIholdsgreatpotentialfortrainingandretrainingexpertworkers,suchaseducators,medicalpersonnel,softwaredevelopers,andotherworkerswithmodern“crafts”(suchaselectriciansandplumbers).
Finally,whilegenerativeAImaytakeovermoreoftheoperationaltasksincertainoccupations,suchasaccounting,financialanalysis,orcomputerprogramming,ifdevelopedintherightmanner,itcouldcreatenewdemandsforhumanexpertiseandjudgmentinoverseeingtheseprocesses,communicatingwithcustomers,andenablingmoresophisticatedservicesthatleveragethesetools.
Severalrecentstudiesprovide“proof-of-concept”examplesthatdemonstratehowgenerativeAIcansupplementexpertiseratherthandisplaceexperts.Pengetal.(2023)demonstratethatGitHubCopilot,agenerativeAI-basedprogrammingaid,cansignificantlyincreaseprogrammerproductivity.2Inacontrolledexperiment,
2
/features/copilot
October2023
CEPRPOLICYINSIGHTNo.123
6
thetreatmentgroupthatwasgivenaccesstothisgenerativeAItoolcompletedtherequiredprogrammingtaskabout56%fasterthanthecontrolgroupwithoutaccesstoCopilot.
NoyandZhang(2023)performedarelatedonlinerandomisedcontrolledtrial,focusedonwritingtasks.Amongthesetofwhite-collarworkersrecruitedforthestudy,halfwererandomlygivenaccessto(andencouragedtouse)ChatGPTforwritingtasks.NoyandZhang(2023)foundsignificantimprovementsinthespeedandqualityofwritingoutput.Mostimportantly,thebiggestimprovementswereconcentratedamongtheleast-capablewriters.AlthoughgenerativeAIdidnotmaketheleast-skilledwritersaseffectiveasthemost-skilledwriters,itmadeallwritersfasterandsubstantiallyreducedthequalitygapbetweenthetwogroups.
Finally,Brynjolfssonetal.(2023)evaluatedtheuseofgenerativeAItoolsusedforprovidingbackgroundinformationtocustomerserviceagents.Theyalsoestimatedasignificantimprovement(about14%)inproductivity,andlikeNoyandZhang’sstudy,thesegainswerethemostpronouncedfornoviceworkers.UsingtheseAItools,noviceworkerswereabletoreachalevelofproficiencywithinthreemonthsthatpreviouslytookworkerstenmonthstoattain.
Inallthreecases,generativeAItoolsautomateandaugmenthumanworksimultaneously.Theautomationstemsfromtime-savings:AIwritesthefirstdraftofcomputercode,advertisingcopy,andcustomersupportresponses.AugmentationhappensbecauseworkersarecalledupontoapplyexpertiseandjudgmenttointermediatebetweentheAI’ssuggestionsandthefinalproduct–whetheritissoftware,text,orcustomersupport.
PromisingApplications
Lookingforward,weseeatleastthreemajorsectorswherehuman-complementaryAIcouldbetransformative,bothforproductivityandforsharedprosperity.
EDUCATION
GenerativeAItoolscanenablemajoradvancementsineducation,togetherwithnewproductivity-enhancingrolesforeducators.Classroominstructionishinderedbythefactthattheteachermustchooseonepaceatwhichanentireclassproceeds,evenifitistoofastforsomestudentsandtooslowforothers.Individualisededucationprogrammesandpersonalisedteachingtoolscanbeeffectiveinenablinglesspreparedstudentstoexcel,butthesetoolsarelabour-intensiveandhenceexpensive.AI-enabledtoolshavethepotentialtovastlyimprovetutoringandself-instruction.
Khanmigo,anappbuiltonChatGPT-4,isaninfinitelypatient,highlyadaptabletutorthatcanbreakcomplexproblemsintotheirconstituentparts,walkstudentsstep-by-stepthroughsolvingthem,andprovidehintsandexamplesalongthewaywithoutdirectlyansweringquestions.3ResearchshowsthatLargeLanguageModels(LLMs)cananticipatewhichpartsofaproblemhumanswillfinddifficultandsuggestsimplificationstoimproveunderstanding(seeBubecketal.2023).
Thesetechnologiescansupporteducatorsaswellasstudents.Teacherscouldfocusmoreoftheirtimeoninstructionandlessonremediation.Theycoulddevelopricherlessonplansthatharnessnewtools,suchasvisualisation,simulation,andeven
3
/khan-labs#khanmigo
October2023
CEPRPOLICYINSIGHTNo.123
7
real-time“interaction”withfictitiousorhistoricalfigures.TherightAIinvestmentscouldenablesignificantgainsinstudentlearning,especiallyamongcurrentlyunderperformingpupils.Suchreorganisationwouldalsocreatearangeofnewtasksforeducators-andwouldalmostcertainlynecessitatefurtherproductivetrainingforexistingteachersandhiringofadditionalAI-savvyteachers.
Itisnotclear,however,thattheprivatesector(oranypublicschooldistrict)hastherightincentivestodevelopsuchAItools.WillAIbedevelopedtoreducegapsbetweenmore-capableandless-capablelearners–asChatGPTdoesforprofessionalwriters–orwillitinsteadbedeployedtoreduceteacherheadcountsandsubstituteforpersonalattention?Thisisnotaquestionofwhatthetechnologycandobuthowwecollectivelydecidetodevelopanddeployit.ApplicationsofAIthatappeartoreducelabourcostsmaybemoreappealingtomanycash-strappedschooldistrictsintheUnitedStates.Thus,ourconcernisthatAIwillbeusedtoautomateteaching,testing,andgrading,ratherthanfornewpersonalisededucation-targetingtasks.
HEALTHCARE
GiventhatoneinfiveUSdollarsisspentonhealthcare,anytechnologythatimprovesefficiency,lowerscosts,orbroadensaccesstothehealthcaresystemhaspotentiallyenormousbenefits.GenerativeAItoolscanimprovehealthcaredeliveryandaccessibility,enablingproductivitygainsandgeneratingvaluablenewworkertasks.Forexample,generativeAItoolscouldsupportexpandingscopeofpracticeboundaries,enablingmedicalprofessionalsatalllevelstoaccomplishabroaderrangeoftasks.Justasnursepractitionershaveprovedeffectiveatdiagnosing,prescribing,andtreating(Asubontengetal.1995,Lietal.2012)–tasksformerlydoneexclusivelybydoctors–thedecision-supportcapacitiesofAIcanenablealargersetoftrainedmedicalprofessionalstoaccomplishexperttaskswithoutexclusivelyrelyingonthemostelitemedicalprofessionals.UsingAI,qualifiednursepractitioners,nurses,andhealthtechnicianscoulddiagnoseroutinehealthproblems,recommendcoursesoftreatment,andmoreefficientlyroutepatientstofurthercareoptions.
MODERNCRAFTWORKERS(MCWS)
Inlinewiththeelectricianexampleabove,generativeAItoolscanbetransformativeformoderncraftworkers(MCWs)morebroadly.4TheUSiscurrentlyundertakingamajorinfrastructureinvestmentagenda,withgrowingemploymentinmanufacturing,greenenergyproduction,andchipproduction,amongothersectors.SkilledMCWsareinshortsupplyduetoanagingpopulationanddecadesofover-investmentinhighereducationattheexpenseofvaluablevocationaltraining.AIcanbeusedtosupporttrainingandenableMCWstocarryoutawiderrangeoftasksthatrequirespecialisedexpertise.AIcanproviderelevantinformation,real-timeinstruction,anddecision-makingsupportinelectricalwork,plumbing,expertrepair,design,andconstruction,amongotheractivities.ThecurrentgenerationofAItechnologiescannotreplacetheworkofMCWs–whosetasksrequiredexterity,flexibility,andjudgmentthatarefarbeyondthegraspofcurrentrobotics(evenAI-enhancedrobotics).ButAIcanenabletheseworkerstodomorewiththeirskillsbysolvingabroaderanddeeperrangeofappliedproblemsinthefield.
4Alsoknownas“moderntrades”or“tradespeople”.
CEPRPOLICYINSIGHTNo.123October2023
8
WhatCanBeDone
Taxsystem:ThecurrentUStaxcodeplacesaheavierburdenonfirmsthathirelabourthanthosethatinvestinalgorithmstoautomatework(Acemogluetal.2020).Weshouldaimtocreateamoresymmetrictaxstructure,wheremarginaltaxesforhiring(andtraining)labourandforinvestinginequipment/softwareareequated.Thiswillshiftincentivestowardhuman-complementarytechnologicalchoicesbyreducingthebiasofthetaxcodetowardphysicalcapitaloverhumancapital.
Labourvoice:ThedirectionofAIwillhaveprofoundconsequencesforallworkers.Creatinganinstitutionalframeworkinwhichworkersalsohaveavoicewouldbeaconstructivestep–andthereisanimportantroleforcivilsocietyinpressingforthistohappen,includingthrougharticulatingneedsatthelocalandstatelevel.Ataminimum,federalgovernmentpolicyshouldrestrictdeploymentofuntested(orinsufficientlytested)AIforapplicationsthatcouldputworkersatrisk–forexample,inhigh-stakespersonneldecision-makingtasks(includinghiringandtermination)orinworkplacemonitoringandsurveillance.Healthandsafetyrulesneedtobeupdatedaccordingly.
Fundingformorehuman-complementaryresearch:Giventhatthecurrentpathofresearchhasabiastowardautomation,additionalsupportfortheresearchanddevelopmentofhuman-complementaryAItechnologiescouldhavesignificantimpact.Itishardtotargethuman-complementaryworkintheabstract.Itisfeasible,however,tofocusonspecificsectorsandactivitieswhereopportunitiesarealreadyabundant.Theseincludeeducation,healthcare,andMCWtraining.JustasDARPAorchestratedinvestmentsandcompetitionstofosterthedevelopmentofself-drivingcarsanddexterousrobotics,thefederalgovernmentshouldfostercompetitionandinvestmentthatpairsAItoolswithhumanexpertise,aimingtoimproveworkinvitalsocialsectors.
AIexpertisewithinthefederalgovernment:AIwilltoucheveryareaofgovernmentinvestment,regulation,andoversight,including(butnotlimitedto):transportation,energyproduction,labourconditions,healthcare,education,environmentalprotection,publicsafety,andmilitarycapabilities.Developing
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中圖版必修3生物下冊月考試卷含答案
- 學(xué)生成長記錄評價體系的創(chuàng)新與實踐
- 轉(zhuǎn)憶初心發(fā)言材料
- 江蘇建筑職業(yè)技術(shù)學(xué)院《生物學(xué)專業(yè)英語》2023-2024學(xué)年第一學(xué)期期末試卷
- 外企投訴回復(fù)函
- 湖南現(xiàn)代物流職業(yè)技術(shù)學(xué)院《精算模型》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年滬教版八年級生物下冊月考試卷
- 2025年教科新版選修化學(xué)下冊月考試卷
- 二零二五年度金融科技風險評估服務(wù)合同2篇
- 2024版監(jiān)控設(shè)備維修合同
- 基于STEAM教育的小學(xué)德育創(chuàng)新實踐研究
- 2024年03月山東煙臺銀行招考筆試歷年參考題庫附帶答案詳解
- 河道綜合治理工程施工組織設(shè)計
- 江蘇省揚州市2024-2025學(xué)年高中學(xué)業(yè)水平合格性模擬考試英語試題(含答案)
- 廣東省廣州市番禺區(qū)2023-2024學(xué)年八年級上學(xué)期期末英語試題
- 2024-2025學(xué)年上學(xué)期廣州初中英語九年級期末試卷
- 迪士尼樂園總體規(guī)劃
- 惠州學(xué)院《大學(xué)物理》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年江蘇省蘇州市中考數(shù)學(xué)試卷含答案
- 2024年世界職業(yè)院校技能大賽高職組“市政管線(道)數(shù)字化施工組”賽項考試題庫
- 2024消防安全警示教育(含近期事故案例)
評論
0/150
提交評論