版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
9.1.1不等式及其解集
問題:小明早上7:20從家出發(fā),趕往離家2000米的學(xué)校上課,若學(xué)校8:00開始上課,問:小明的速度應(yīng)該具備什么條件,才能不遲到?若設(shè)小明的速度為每分鐘x米,你能用一個(gè)式子表示嗎?分析:若剛好在8:00到學(xué)校,則所用時(shí)間為40分鐘,此時(shí)可列出方程:.①但為了避免遲到,小明要在8:00之前趕到學(xué)校,故所用時(shí)間要少于40分鐘,于是可得:.②1.不等式的概念(1)像②這樣,用符號(hào)“<”或“>”表示大小關(guān)系的式子,叫做不等式.
(2)像a+1≠a-1這樣,用符號(hào)“≠”表示不等關(guān)系的式子也是不等式.一個(gè)式子是不等式,要把握兩點(diǎn):(1)含有不等號(hào);(2)表示不等關(guān)系,而與不等式是否成立無關(guān).例1下列式子是不等式的有()①2x=20;②3>2;③
x≠4-3;④5a+6b;⑤x>2y;⑥;⑦
>3.A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)解:判斷一個(gè)式子是否為不等式的關(guān)鍵在于式子中是否含有“≠”“>”“<”,由此可知②③⑤⑦是不等式.C例2用不等式表示:(1)a與5的和是正數(shù);(2)a與2的差是負(fù)數(shù);(3)b與15的和小于27;(4)b與12的差大于-5.a+5>0a-2<0b+15<27b-12>-5判斷下列數(shù)中哪些是不等式
的解:60,73,74.9,75.1,76,79,80,90.你還能找出這個(gè)不等式的其他解嗎?這個(gè)不等式有多少個(gè)解?(2)你從表格中發(fā)現(xiàn)了什么規(guī)律?(1)你發(fā)現(xiàn)哪些數(shù)是這個(gè)不等式的解?607374.975.176798090不是是是不是不是是是是無數(shù)個(gè)1.不等式的解使不等式成立的未知數(shù)的值,叫做不等式的解.不等式的解是一個(gè)具體的值.
結(jié)合以上內(nèi)容,我們可以探究出:2.不等式的解集與解不等式(1)一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集.(2)求不等式解集的過程叫做解不等式.3.用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:(1)大于向右畫,小于向左畫;(2)“>”,“<”畫空心圓圈.例如,
表示了能使不等式
成立的
的取值范圍,它可以在數(shù)軸上表示.判斷一個(gè)數(shù)值是不是不等式的解,只需代入驗(yàn)證即可.由于不等式的解集必須符合兩個(gè)條件:(1)解集中的每一個(gè)數(shù)值都能使不等式成立;(2)能夠使不等式成立的所有數(shù)值都在解集中,因此如果解集內(nèi)有一個(gè)數(shù)能夠使不等式不成立或解集外有一個(gè)數(shù)能夠使不等式成立,那么這個(gè)解集就不是這個(gè)不等式的解集.例3直接寫出下列不等式的解集:
(1)x+2>5;
(2)3x<9;
(3)x-5>0.
x>5x<3x>31.用不等式表示下列數(shù)量關(guān)系:(1)x的5倍大于-7;(2)a與b的和的一半小于-1;(3)長、寬分別為xcm,ycm的長方形的面積小于邊長為acm的正方形的面積.
5x>-7xy
<a2
x<2
2.用不等式表示圖中的解集:
x>-7.53.下列說法中,正確的是(
)
A.x=-3是不等式x+4<1的解
B.x>
是不等式-2x>-3的解集
C.不等式x>-5的負(fù)整數(shù)解有無數(shù)多個(gè)
D.不等式x<7的非正整數(shù)解有無數(shù)多個(gè)D解析:當(dāng)x=-3時(shí),x+4=-3+4=1,所以A錯(cuò);取一個(gè)能使不等式x>
成立的值,如x=2,代入不等式-2x>-3,發(fā)現(xiàn)不等式-2x>-3不成立,故x=2不是-2x>-3的解,所以x>
不是不等式-2x>-3的解集,故B錯(cuò);不等式x>-5的負(fù)整數(shù)解只有-1,-2,-3,-4,共4個(gè),所以C錯(cuò).1.掌握不等式、不等式的解、不等式的解集等相關(guān)的概念.2.會(huì)判斷一個(gè)式子是不是不等式.3.會(huì)用數(shù)軸表示不等式的解集.第九章不等式與不等式組不等式及其解集
學(xué)習(xí)目標(biāo)1.(課標(biāo))結(jié)合具體問題,了解不等式的意義.2.學(xué)會(huì)推理不等式的解與理解解集的意義.3.(課標(biāo))能在數(shù)軸上表示出不等式的解集.知識(shí)點(diǎn)一:不等式的概念(1)用符號(hào)
或
表示大小關(guān)系的式子,叫做不等式.
(2)像a+1≠a-1這樣,用符號(hào)“≠”表示不等關(guān)系的式子也是不等式.
<
知識(shí)要點(diǎn)
>
符號(hào)><≥≤≠讀法大于小于大于或等于小于或等于不等于(3)常見的不等號(hào):判斷下列式子是否為不等式.(填“是”或“不是”)(1)3>2;(
)(2)a2+1>0;(
)(3)3x2+2x;(
)(4)x<3x+1;(
)(5)x=2x+5;(
)(6)x2+4x<3x+1.(
)
是
不是
是
不是
是
對(duì)點(diǎn)訓(xùn)練
是
知識(shí)點(diǎn)二:不等式的解(1)使不等式成立的未知數(shù)的
,叫做不等式的解.不等式的解是一個(gè)具體的值.
(2)溫馨提示:一般地,不等式有
個(gè)解;要判斷某個(gè)數(shù)值是否為不等式的解,可直接將該值代入不等式的左右兩邊看不等式是否成立,如果成立,則是不等式的解,反之不是.
無數(shù)
值
(人教7下P116)下列各數(shù)中,哪些是不等式x+3>6的解?哪些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,12.3.2,4.8,8,12是;-4,-2.5,0,1,2.5,3不是.知識(shí)點(diǎn)三:不等式的解集與解不等式(1)一般地,一個(gè)含有未知數(shù)的不等式的所有的解,組成這個(gè)不等式的
.不等式的解集是一個(gè)集合,包含不等式的每一個(gè)解.
(2)求不等式的解集的過程叫做
.
(3)不等式的解集必須符合兩個(gè)條件:①解集中的每個(gè)數(shù)值都能使不等式成立;②能夠使不等式成立的所有數(shù)值都在這個(gè)解集中.
解不等式
解集
(人教7下P116)直接寫出下列不等式的解集:(1)x+3>6;
(2)2x<8;
(3)x-2>0.
x>2x<4x>3(2)不等式的解集用數(shù)軸表示(設(shè)a<0):知識(shí)點(diǎn)四:不等式的解集在數(shù)軸上的表示(1)思考:用數(shù)軸表示解集時(shí),實(shí)心與空心的區(qū)別?實(shí)心表示
;空心表示
.
不包含
包含
用不等式表示圖中的解集:x<2
x≤2x≥-7.5
x>-7.5是不等式的有
(填序號(hào)).
精典范例
①②④⑤⑦⑧
小結(jié):有些不等式含有未知數(shù),有些不等式不含未知數(shù)(純數(shù)字不等式).下列不等式中,是一元一次不等式的是(
)A.2x-1>0
B.-1<2C.3x-2y<-1
D.y2+3>5變式練習(xí)
A
在下列數(shù)學(xué)式子中:①-2<0;②2x+3y>0;③x=2;④x2+2xy+y2;⑤x≠3;⑥x+1>y+2.是不等式的有(
)A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
D
(3)m與n
兩數(shù)的平方差大于6:
;
(4)x的絕對(duì)值與1的和大于1:
.
|x|+1>1
小結(jié):列不等式時(shí),對(duì)不等符號(hào)以及倍數(shù)、和、差、商、平方、絕對(duì)值等的表述要準(zhǔn)確.
m2-n2>6
(3)a與3的和的30%不大于5:
;
(4)a的20%與a的和不小于a的3倍與3的差:
.
20%a+a≥3a-3
(人教7下P120改編、北師8下P38改編)用不等式表示:(1)x的2倍與5的差不大于1:
;
30%(a+3)≤5
2x-5≤1
【例3】判斷下列說法是否正確:(1)x=3是不等式x<1的一個(gè)解;(
)(2)不等式1-x<0的解有無數(shù)多個(gè);(
)(3)x-5<1的解是x=2;(
)(4)x=0是不等式x≥0的一個(gè)解.(
)
√
×
√小結(jié):不等式的解有無數(shù)個(gè),滿足不等關(guān)系即可.
×下列各數(shù)中,是不等式x+1<4解的數(shù)有哪些?哪些不是該不等式的解?8,7,5.5,4,2,1,0,2.5,-6.解:2,1,0,2.5,-6是不等式的解;8,7,5.5,4不是不等式的解.【例4】在數(shù)軸上表示下列不等式的解集:(1)x<2; (2)x≥-3.(1)答案圖
(2)答案圖小結(jié):畫出數(shù)軸——找到對(duì)應(yīng)點(diǎn)——判斷實(shí)心或空心——判斷方向——畫出解集.A.x>-2
B.x<-2C.x≥-2
D.-2<x<2用不等式表示如圖所示的解集,正確的是(
)
A
有理數(shù)a,b在數(shù)軸上的位置如圖所示,用不等號(hào)填空:(1)a-b
0;(2)a+b
0;
>
<
<>【例5】(創(chuàng)新題)(北師8下P39)在生活中不等關(guān)系的應(yīng)用隨處可見.如圖,圖(1)表示機(jī)動(dòng)車駛?cè)肭胺降缆返淖畹蜁r(shí)速限制,此標(biāo)志設(shè)在高速公路或其他道路限速路段的起點(diǎn).你會(huì)表示這些不等關(guān)系嗎?解:(1)設(shè)時(shí)速為a
km/h,則a≥50;(2)設(shè)車高為b
m,則b≤
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人抵押貸款合同季度范本
- 臨街店鋪購買合同范本
- 二次供水設(shè)備采購合同
- 專業(yè)服裝管理軟件經(jīng)銷合同書
- 上海市股權(quán)轉(zhuǎn)讓合同標(biāo)準(zhǔn)范本
- 二手房銷售代理合同協(xié)議
- 中外合作種植戰(zhàn)略合作合同
- 云計(jì)算服務(wù)提供商數(shù)據(jù)保密合同
- 返聘人員協(xié)議書
- IT行業(yè)員工培訓(xùn)勞動(dòng)合同范本
- 小紅書種草營銷師(初級(jí))認(rèn)證考試真題試題庫(含答案)
- 癲癇病人的護(hù)理(課件)
- 企業(yè)資產(chǎn)管理培訓(xùn)
- 2024年WPS計(jì)算機(jī)二級(jí)考試題庫350題(含答案)
- 2024年4月27日浙江省事業(yè)單位招聘《職業(yè)能力傾向測(cè)驗(yàn)》試題
- 2024年6月浙江省高考地理試卷真題(含答案逐題解析)
- 醫(yī)院培訓(xùn)課件:《如何撰寫護(hù)理科研標(biāo)書》
- 風(fēng)車的原理小班課件
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期末考試 數(shù)學(xué) 含答案
- 2024年山東省濟(jì)南市中考英語試題卷(含答案)
- 2024年北師大版八年級(jí)上冊(cè)全冊(cè)數(shù)學(xué)單元測(cè)試題含答案
評(píng)論
0/150
提交評(píng)論