浙江專用2022-2023學(xué)年高二數(shù)學(xué)上學(xué)期期中挑戰(zhàn)滿分沖刺卷第1章空間向量與立體幾何知識(shí)梳理新人教A版選擇性必修第一冊_第1頁
浙江專用2022-2023學(xué)年高二數(shù)學(xué)上學(xué)期期中挑戰(zhàn)滿分沖刺卷第1章空間向量與立體幾何知識(shí)梳理新人教A版選擇性必修第一冊_第2頁
浙江專用2022-2023學(xué)年高二數(shù)學(xué)上學(xué)期期中挑戰(zhàn)滿分沖刺卷第1章空間向量與立體幾何知識(shí)梳理新人教A版選擇性必修第一冊_第3頁
浙江專用2022-2023學(xué)年高二數(shù)學(xué)上學(xué)期期中挑戰(zhàn)滿分沖刺卷第1章空間向量與立體幾何知識(shí)梳理新人教A版選擇性必修第一冊_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

-1-第1章空間向量與立體幾何知識(shí)梳理1.空間向量的有關(guān)概念名稱定義空間向量在空間中,具有大小和方向的量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共線向量(或平行向量)表示空間向量的有向線段所在的直線互相平行或重合的向量共面向量平行于同一個(gè)平面的向量2.空間向量的有關(guān)定理(1)共線向量定理:對任意兩個(gè)空間向量a,b(b≠0),a∥b的充要條件是存在實(shí)數(shù)λ,使得a=λb.(2)共面向量定理:如果兩個(gè)向量a,b不共線,那么向量p與向量a,b共面的充要條件是存在唯一的有序?qū)崝?shù)對(x,y),使p=xa+yb.(3)空間向量基本定理:如果三個(gè)向量a,b,c不共面,那么對任意一個(gè)空間向量p,存在唯一的有序?qū)崝?shù)組{x,y,z},使得p=xa+yb+zc,其中,{a,b,c}叫做空間的一個(gè)基底.3.空間向量的數(shù)量積(1)兩向量的夾角:已知兩個(gè)非零向量a,b,在空間任取一點(diǎn)O,作=a,=b,則∠AOB叫做向量a與b的夾角,記作〈a,b〉,其范圍是[0,π],若〈a,b〉=eq\f(π,2),則稱a與b互相垂直,記作a⊥b.(2)兩向量的數(shù)量積:已知兩個(gè)非零向量a,b,則|a||b|cos〈a,b〉叫做a,b的數(shù)量積,記作a·b,即a·b=|a||b|cos〈a,b〉.(3)空間向量數(shù)量積的運(yùn)算律①結(jié)合律:(λa)·b=λ(a·b);②交換律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.4.空間向量的坐標(biāo)表示及其應(yīng)用設(shè)a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐標(biāo)表示數(shù)量積a·ba1b1+a2b2+a3b3共線a=λb(b≠0,λ∈R)a1=λb1,a2=λb2,a3=λb3垂直a·b=0(a≠0,b≠0)a1b1+a2b2+a3b3=0模|a|eq\r(aeq\o\al(2,1)+aeq\o\al(2,2)+aeq\o\al(2,3))夾角〈a,b〉(a≠0,b≠0)cos〈a,b〉=eq\f(a1b1+a2b2+a3b3,\r(aeq\o\al(2,1)+aeq\o\al(2,2)+aeq\o\al(2,3))·\r(beq\o\al(2,1)+beq\o\al(2,2)+beq\o\al(2,3)))5.直線的方向向量和平面的法向量(1)直線的方向向量:如果表示非零向量a的有向線段所在直線與直線l平行或重合,則稱此向量a為直線l的方向向量.(2)平面的法向量:直線l⊥α,取直線l的方向向量a,則向量a叫做平面α的法向量.在空間求平面的法向量的方法:(1)直接法:找一條與平面垂直的直線,求該直線的方向向量。(2)待定系數(shù)法:建立空間直接坐標(biāo)系①設(shè)平面的法向量為②在平面內(nèi)找兩個(gè)不共線的向量和③建立方程組:④解方程組,取其中的一組解即可。6.空間位置關(guān)系的向量表示位置關(guān)系向量表示直線l1,l2的方向向量分別為u1,u2l1∥l2u1∥u2?u1=λu2l1⊥l2u1⊥u2?u1·u2=0直線l的方向向量為u,平面α的法向量為nl∥αu⊥n?u·n=0l⊥αu∥n?u=λn平面α,β的法向量分別為n1,n2α∥βn1∥n2?n1=λn2α⊥βn1⊥n2?n1·n2=0常用結(jié)論:1.在平面中A,B,C三點(diǎn)共線的充要條件是:=x+y(其中x+y=1),O為平面內(nèi)任意一點(diǎn).2.在空間中P,A,B,C四點(diǎn)共面的充要條件是:=x+y+z(其中x+y+z=1),O為空間任意一點(diǎn).3.向量的數(shù)量積滿足交換律、分配律,即a·b=b·a,a·(b+c)=a·b+a·c成立,但不滿足結(jié)合律,即(a·b)·c=a·(b·c)不一定成立.4.在利用=x+y證明MN∥平面ABC時(shí),必須說明M點(diǎn)或N點(diǎn)不在平面ABC內(nèi).7.用向量方法求空間角與空間距離(1)求異面直線所成的角已知a,b為兩異面直線,A,C與B,D分別是a,b上的任意兩點(diǎn),a,b所成的角為,則.知識(shí)點(diǎn)詮釋:兩異面直線所成的角的范圍為.兩異面直線所成的角可以通過這兩直線的方向向量的夾角來求得,但二者不完全相等,當(dāng)兩方向向量的夾角是鈍角時(shí),應(yīng)取其補(bǔ)角作為兩異面直線所成的角.(2)求直線和平面所成的角設(shè)直線的方向向量為,平面的法向量為,直線與平面所成的角為,與的角為,則有.(3)求二面角如圖,若于于,平面交于,則為二面角的平面角,.若分別為面的法向量,則二面角的平面角或,即二面角等于它的兩個(gè)面的法向量的夾角或夾角的補(bǔ)角.①當(dāng)法向量與的方向分別指向二面角的內(nèi)側(cè)與外側(cè)時(shí),二面角的大小等于的夾角的大?。诋?dāng)法向量的方向同時(shí)指向二面角的內(nèi)側(cè)或外側(cè)時(shí),二面角的大小等于的夾角的補(bǔ)角的大小.(4).求點(diǎn)面距的一般步驟:①求出該平面的一個(gè)法向量;②找出從該點(diǎn)出發(fā)的平面的任一條斜線段對應(yīng)的向量;③求出法向量與斜線段向量的數(shù)量積的絕對值再除以法向量的模,即可求出點(diǎn)到平面的距離.即:點(diǎn)A到平面的距離,其中,是平面的法向量.(5).線面距、面面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論