一種基于鯨魚優(yōu)化的多路徑路由發(fā)現(xiàn)算法_第1頁
一種基于鯨魚優(yōu)化的多路徑路由發(fā)現(xiàn)算法_第2頁
一種基于鯨魚優(yōu)化的多路徑路由發(fā)現(xiàn)算法_第3頁
一種基于鯨魚優(yōu)化的多路徑路由發(fā)現(xiàn)算法_第4頁
一種基于鯨魚優(yōu)化的多路徑路由發(fā)現(xiàn)算法_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

一種基于鯨魚優(yōu)化的多路徑路由發(fā)現(xiàn)算法AbstractMultiplepathroutingdiscoveryisachallengingprobleminnetworkcommunicationsduetothevariousparametersinvolved,suchasnetworktopology,trafficloadlevels,andtransmissionreliability.Toovercomethischallenge,anewalgorithmbasedontheWhaleOptimizationAlgorithmisproposedinthispaper.TheWhaleOptimizationAlgorithmisanature-inspiredalgorithmthatborrowsitstechniquesfromthebehaviorofhumpbackwhales'groupmovements.Theproposedalgorithmselectsmultiplepathstoroutedatapackets,seekingtofindtheoptimalsolutionthatbalancesthetrade-offbetweennetworkdelayandtransmissionrobustness.Experimentalresultsshowthattheproposedalgorithmoutperformsexistingworksintermsofreduceddelay,decreasedpacketloss,andenhancednetworkthroughput.IntroductionAsthedemandforhigh-speedandreliablecommunicationservicescontinuestorise,thenetworkarchitecturemustadaptaccordinglytoprovideefficientroutingofdatapackets.Multiplepathroutingdiscoveryisapromisingapproachtocopewiththesedemandssinceitcanbalanceloaddistribution,reducecongestion,improvereliability,andincreaseresilience.Thetraditionalapproachtorouting,whichusessinglepathrouting,isvulnerabletolinkfailures,resultingincommunicationdisruptionsandreducedqualityofservice.Multiplepathroutingishighlyefficientintermsofend-to-enddelay,bandwidthutilization,andpacketlossrate.Severalalgorithmshavebeenproposedtoaddressthemultiplepathroutingproblem,suchasAntColonyOptimization,GeneticAlgorithm,ParticleSwarmOptimization,andArtificialBeeColonyAlgorithm,etc.Amongthesealgorithms,WhaleOptimizationAlgorithm(WOA)isthemostrecentone,whichhasbeenshowntohavesuperiorperformanceinsolvingvariousoptimizationproblems.WOA,asnature-inspiredevolutionaryalgorithm,takesinspirationfromthesocialbehaviorofhumpbackwhaleswhilesearchingfortheoptimalsolution.WOAhasseveralsignificantadvantagescomparedtoothernature-inspiredalgorithmssuchassimplicity,adaptability,andfewertuningparameters.WOAemploysthreesearchmechanisms:exploration,exploitation,andboundaryconstraints,tobalancetheexplorationandexploitationofthesearchspace.ThesemechanismsincreasetheconvergencerateandsolutionaccuracyofWOA.WOAcontinuouslyimprovesitssearchabilitythroughiterationsthatupdatethepositionandvelocityofeachwhaleinthepopulation.ThispaperproposesanewalgorithmbasedontheWOAtosolvethemultiplepathroutingproblem.Theproposedalgorithmselectsdifferentpathsfortransmission,whichcanbalancetheloaddistribution,improvelinkutilization,andenhancenetworkcongestionavoidance.Themaincontributionsofthepapercanbesummarizedasfollows:1.ProposalofanewalgorithmbasedontheWOAtosolvethemultiplepathroutingproblem.2.EvaluationoftheproposedalgorithmagainstseveralexistingalgorithmssuchastheAntColonyAlgorithm,theGeneticAlgorithm,andtheParticleSwarmOptimizationAlgorithm.3.Analysisoftheexperimentalresultsobtainedandcomparisonoftheproposedalgorithm'sperformance.Theremainderofthispaperisorganizedasfollows:Section2summarizesthepreviousresearchonmultiplepathroutingalgorithms.Section3presentsindetailtheproposedalgorithmbasedontheWOAformultiplepathrouting.Section4providestheexperimentalsetupanddataanalysis.Finally,Section5summarizestheresultsandconcludesthepaper.RelatedWorkMultiplepathroutingalgorithmshavebeenwidelystudiedinrecentyears.Themaingoalofthesealgorithmsistobalancetheloaddistribution,mitigatenetworkcongestion,andimprovenetworkperformance.Theearliestworkonmultiplepathroutingwasproposedintheearly1990sandappliedtotheInternet.However,thesealgorithmswerenotwidelyusedduetoslowdatatransmissionrates.Withtheincreasingdemandforhigh-speednetworks,researchershavedevelopedmanyalgorithmstoaddressmultiplepathroutingproblems.Someofthemostpopularalgorithmsarediscussedbelow.TheAntColonyOptimization(ACO)Algorithm,inspiredbytheforagingbehaviorofants,hasbeenusedtosolvemanyoptimizationproblems.TheACOalgorithmappliesaprobabilisticpheromonemodeltoguidetheant'sdecision-makingprocessduringpathselection.ACOhasshownexcellentperformanceincongestionavoidance,loadbalancing,androutingoptimizationincomputernetworks.TheGeneticAlgorithm(GA)isanotherpopularalgorithmthathasbeenwidelyusedinnetworkroutingoptimization.GAusesevolutionarystrategiestooptimizenetworkroutingbyselectingthefittestsolutionsfromapopulationofpotentialsolutions.TheGAalgorithmisefficientinexploringthesearchspaceandcanfindnear-optimalsolutionsinashorttime.TheParticleSwarmOptimization(PSO)Algorithmmodelsthebehaviorofbirdsandfishtosolveoptimizationproblems.PSOishighlysuitableformultiplepathroutingincomputernetworks,asitcanimplementrapiddecisionswhenfacedwithcomplexnetworktopologies,unpredictabletrafficloads,andvariablenetworkperformance.WOAisarelativelynewalgorithmthatwasfirstproposedin2016.WOAismodeledbasedonthesocialbehaviorofhumpbackwhalestosolveoptimizationproblems,suchasthemultiplepathroutingproblem.WOAhasdemonstratedsuperiorperformanceinmanyapplicationsbyusingfewerparametersandrequiringnogradientinformation.ProposedAlgorithmTheWOAalgorithm'sbasicideaistomodelthesocialbehaviorofhumpbackwhalesandapplytheirbehaviortosearchforoptimalsolutions.TheWOAalgorithmemploysthreemechanisms:exploration,exploitation,andboundaryconstraints,tobalancethesolution'saccuracyandconvergencerate.WOAusesthefollowingequationsduringthesearchprocess:X(t+1)=X(t)+A(D(t,X(best))*C(t,best)-X(t))X1(t+1)=X(best)-A*r1*(X(Worst)-X(t))X2(t+1)=X(mean)-A*r2*(X(rand)-X(t))WhereX(t)isthecurrentsearchposition,X(t+1)istheupdatedsearchposition,X(best)representsthebestpositioninthesearch,X(Worst)istheworstsearchposition,X(mean)representsthemeansearchposition,X(rand)isarandomsearchposition,Aisthesearchcontrolparameter,r1andr2arerandomnumbersbetween0and1,andCandDarethetwotransferfunctionsoftheWOAalgorithm.TheproposedalgorithmbasedontheWOAformultiplepathroutingworksasfollows:1.TheWOAalgorithminitializesapopulationofhumpbackwhaleswithrandompositionsandvelocities.2.Thealgorithmdividesthenetworktopologyintoseveralsubnetworksbyperformingnetworkpartitioningusingagraph-theoreticalmethod.3.Thealgorithmselectsasourcenodeandadestinationnodeforeachsubnetwork.4.EachwhaleselectsapathfortransmissionbyapplyingtheWOAalgorithm,whichselectsasetofpathswithminimalend-to-enddelaysandmaximumrobustness.5.ThealgorithmupdatesthepositionandvelocityofeachwhaleandselectsagainthepathusingtheWOAalgorithm.6.Thealgorithmevaluatesthetransmissionpathbasedonseveralqualitymetrics,suchasend-to-enddelayandtransmissionrobustness.7.Thealgorithmselectsthebestsolutionfromthepopulationofhumpbackwhalesandtransmitsthedatapackettoitsdestinationonthatpath.8.Thealgorithmcontinuesthesearchandpathdiscoveryprocessuntilthemaximumnumberofiterationsisreachedorthetargetsolutionisachieved.ExperimentalResultsTheproposedalgorithmwasimplementedandevaluatedonasimulatednetworkenvironmentusingthens-3simulator.Thesimulationenvironmentincludedarandomnetworktopologywith20nodes,8paths,and160links,withauniformpacketgenerationrateof1packet/sec.Theperformanceoftheproposedalgorithmwascomparedwiththreestate-of-the-artalgorithms,namelyACO,GA,andPSO.Themetricsusedforevaluatingtheperformanceofthealgorithmswereend-to-enddelay,packetlossrate,andnetworkthroughput.TheresultsofthesimulationareshowninFig.1-3.Fig.1showstheend-to-enddelayofthedifferentalgorithms.ItcanbeseenthattheproposedalgorithmbasedonWOAhasthelowestend-to-enddelayamongallthetestedalgorithms.TheWOAalgorithmoutperformsACO,GA,andPSOintermsofreduceddelay.Fig.2showsthepacketlossrateforthetestedalgorithms.ItcanbeseenthattheproposedWOAalgorithmhasthelowestpacketlossratecomparedtotheothertested

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論