下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一種基于鯨魚優(yōu)化的多路徑路由發(fā)現(xiàn)算法AbstractMultiplepathroutingdiscoveryisachallengingprobleminnetworkcommunicationsduetothevariousparametersinvolved,suchasnetworktopology,trafficloadlevels,andtransmissionreliability.Toovercomethischallenge,anewalgorithmbasedontheWhaleOptimizationAlgorithmisproposedinthispaper.TheWhaleOptimizationAlgorithmisanature-inspiredalgorithmthatborrowsitstechniquesfromthebehaviorofhumpbackwhales'groupmovements.Theproposedalgorithmselectsmultiplepathstoroutedatapackets,seekingtofindtheoptimalsolutionthatbalancesthetrade-offbetweennetworkdelayandtransmissionrobustness.Experimentalresultsshowthattheproposedalgorithmoutperformsexistingworksintermsofreduceddelay,decreasedpacketloss,andenhancednetworkthroughput.IntroductionAsthedemandforhigh-speedandreliablecommunicationservicescontinuestorise,thenetworkarchitecturemustadaptaccordinglytoprovideefficientroutingofdatapackets.Multiplepathroutingdiscoveryisapromisingapproachtocopewiththesedemandssinceitcanbalanceloaddistribution,reducecongestion,improvereliability,andincreaseresilience.Thetraditionalapproachtorouting,whichusessinglepathrouting,isvulnerabletolinkfailures,resultingincommunicationdisruptionsandreducedqualityofservice.Multiplepathroutingishighlyefficientintermsofend-to-enddelay,bandwidthutilization,andpacketlossrate.Severalalgorithmshavebeenproposedtoaddressthemultiplepathroutingproblem,suchasAntColonyOptimization,GeneticAlgorithm,ParticleSwarmOptimization,andArtificialBeeColonyAlgorithm,etc.Amongthesealgorithms,WhaleOptimizationAlgorithm(WOA)isthemostrecentone,whichhasbeenshowntohavesuperiorperformanceinsolvingvariousoptimizationproblems.WOA,asnature-inspiredevolutionaryalgorithm,takesinspirationfromthesocialbehaviorofhumpbackwhaleswhilesearchingfortheoptimalsolution.WOAhasseveralsignificantadvantagescomparedtoothernature-inspiredalgorithmssuchassimplicity,adaptability,andfewertuningparameters.WOAemploysthreesearchmechanisms:exploration,exploitation,andboundaryconstraints,tobalancetheexplorationandexploitationofthesearchspace.ThesemechanismsincreasetheconvergencerateandsolutionaccuracyofWOA.WOAcontinuouslyimprovesitssearchabilitythroughiterationsthatupdatethepositionandvelocityofeachwhaleinthepopulation.ThispaperproposesanewalgorithmbasedontheWOAtosolvethemultiplepathroutingproblem.Theproposedalgorithmselectsdifferentpathsfortransmission,whichcanbalancetheloaddistribution,improvelinkutilization,andenhancenetworkcongestionavoidance.Themaincontributionsofthepapercanbesummarizedasfollows:1.ProposalofanewalgorithmbasedontheWOAtosolvethemultiplepathroutingproblem.2.EvaluationoftheproposedalgorithmagainstseveralexistingalgorithmssuchastheAntColonyAlgorithm,theGeneticAlgorithm,andtheParticleSwarmOptimizationAlgorithm.3.Analysisoftheexperimentalresultsobtainedandcomparisonoftheproposedalgorithm'sperformance.Theremainderofthispaperisorganizedasfollows:Section2summarizesthepreviousresearchonmultiplepathroutingalgorithms.Section3presentsindetailtheproposedalgorithmbasedontheWOAformultiplepathrouting.Section4providestheexperimentalsetupanddataanalysis.Finally,Section5summarizestheresultsandconcludesthepaper.RelatedWorkMultiplepathroutingalgorithmshavebeenwidelystudiedinrecentyears.Themaingoalofthesealgorithmsistobalancetheloaddistribution,mitigatenetworkcongestion,andimprovenetworkperformance.Theearliestworkonmultiplepathroutingwasproposedintheearly1990sandappliedtotheInternet.However,thesealgorithmswerenotwidelyusedduetoslowdatatransmissionrates.Withtheincreasingdemandforhigh-speednetworks,researchershavedevelopedmanyalgorithmstoaddressmultiplepathroutingproblems.Someofthemostpopularalgorithmsarediscussedbelow.TheAntColonyOptimization(ACO)Algorithm,inspiredbytheforagingbehaviorofants,hasbeenusedtosolvemanyoptimizationproblems.TheACOalgorithmappliesaprobabilisticpheromonemodeltoguidetheant'sdecision-makingprocessduringpathselection.ACOhasshownexcellentperformanceincongestionavoidance,loadbalancing,androutingoptimizationincomputernetworks.TheGeneticAlgorithm(GA)isanotherpopularalgorithmthathasbeenwidelyusedinnetworkroutingoptimization.GAusesevolutionarystrategiestooptimizenetworkroutingbyselectingthefittestsolutionsfromapopulationofpotentialsolutions.TheGAalgorithmisefficientinexploringthesearchspaceandcanfindnear-optimalsolutionsinashorttime.TheParticleSwarmOptimization(PSO)Algorithmmodelsthebehaviorofbirdsandfishtosolveoptimizationproblems.PSOishighlysuitableformultiplepathroutingincomputernetworks,asitcanimplementrapiddecisionswhenfacedwithcomplexnetworktopologies,unpredictabletrafficloads,andvariablenetworkperformance.WOAisarelativelynewalgorithmthatwasfirstproposedin2016.WOAismodeledbasedonthesocialbehaviorofhumpbackwhalestosolveoptimizationproblems,suchasthemultiplepathroutingproblem.WOAhasdemonstratedsuperiorperformanceinmanyapplicationsbyusingfewerparametersandrequiringnogradientinformation.ProposedAlgorithmTheWOAalgorithm'sbasicideaistomodelthesocialbehaviorofhumpbackwhalesandapplytheirbehaviortosearchforoptimalsolutions.TheWOAalgorithmemploysthreemechanisms:exploration,exploitation,andboundaryconstraints,tobalancethesolution'saccuracyandconvergencerate.WOAusesthefollowingequationsduringthesearchprocess:X(t+1)=X(t)+A(D(t,X(best))*C(t,best)-X(t))X1(t+1)=X(best)-A*r1*(X(Worst)-X(t))X2(t+1)=X(mean)-A*r2*(X(rand)-X(t))WhereX(t)isthecurrentsearchposition,X(t+1)istheupdatedsearchposition,X(best)representsthebestpositioninthesearch,X(Worst)istheworstsearchposition,X(mean)representsthemeansearchposition,X(rand)isarandomsearchposition,Aisthesearchcontrolparameter,r1andr2arerandomnumbersbetween0and1,andCandDarethetwotransferfunctionsoftheWOAalgorithm.TheproposedalgorithmbasedontheWOAformultiplepathroutingworksasfollows:1.TheWOAalgorithminitializesapopulationofhumpbackwhaleswithrandompositionsandvelocities.2.Thealgorithmdividesthenetworktopologyintoseveralsubnetworksbyperformingnetworkpartitioningusingagraph-theoreticalmethod.3.Thealgorithmselectsasourcenodeandadestinationnodeforeachsubnetwork.4.EachwhaleselectsapathfortransmissionbyapplyingtheWOAalgorithm,whichselectsasetofpathswithminimalend-to-enddelaysandmaximumrobustness.5.ThealgorithmupdatesthepositionandvelocityofeachwhaleandselectsagainthepathusingtheWOAalgorithm.6.Thealgorithmevaluatesthetransmissionpathbasedonseveralqualitymetrics,suchasend-to-enddelayandtransmissionrobustness.7.Thealgorithmselectsthebestsolutionfromthepopulationofhumpbackwhalesandtransmitsthedatapackettoitsdestinationonthatpath.8.Thealgorithmcontinuesthesearchandpathdiscoveryprocessuntilthemaximumnumberofiterationsisreachedorthetargetsolutionisachieved.ExperimentalResultsTheproposedalgorithmwasimplementedandevaluatedonasimulatednetworkenvironmentusingthens-3simulator.Thesimulationenvironmentincludedarandomnetworktopologywith20nodes,8paths,and160links,withauniformpacketgenerationrateof1packet/sec.Theperformanceoftheproposedalgorithmwascomparedwiththreestate-of-the-artalgorithms,namelyACO,GA,andPSO.Themetricsusedforevaluatingtheperformanceofthealgorithmswereend-to-enddelay,packetlossrate,andnetworkthroughput.TheresultsofthesimulationareshowninFig.1-3.Fig.1showstheend-to-enddelayofthedifferentalgorithms.ItcanbeseenthattheproposedalgorithmbasedonWOAhasthelowestend-to-enddelayamongallthetestedalgorithms.TheWOAalgorithmoutperformsACO,GA,andPSOintermsofreduceddelay.Fig.2showsthepacketlossrateforthetestedalgorithms.ItcanbeseenthattheproposedWOAalgorithmhasthelowestpacketlossratecomparedtotheothertested
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025物業(yè)管理權轉讓服務合同-智慧城市綜合體專業(yè)版3篇
- 二零二五年度內部控制制度實施與監(jiān)督合同
- 2025年度個人承包水利工程合同范本2篇
- 2025年度城市應急響應與安保員預備役合同3篇
- 第二單元 近代化的早期探索與民族危機的加?。ń馕霭妫? 2023-2024學年八年級歷史上學期期中考點大串講(部編版)
- 課題申報參考:內蒙古美麗鄉(xiāng)村生產(chǎn)性景觀遺產(chǎn)調查研究
- 課題申報參考:面向碳排放雙控的省域間輸入電隱含碳減排責任厘定與策略方法研究
- 課題申報參考:面向跨市就醫(yī)的醫(yī)療設施城際供需關系評估與優(yōu)化調控
- 課題申報參考:媒介社會與智能傳播研究
- 2025年度高端酒店管理團隊聘用勞務合同4篇
- 初中班級成績分析課件
- 勞務合同樣本下載
- 聰明格練習題(初、中級)
- 血液透析水處理系統(tǒng)演示
- GB/T 27030-2006合格評定第三方符合性標志的通用要求
- GB/T 13663.2-2018給水用聚乙烯(PE)管道系統(tǒng)第2部分:管材
- 同角三角函數(shù)的基本關系式同步練習
- 糖尿病足與周圍血管病01課件
- 固定污染源自動監(jiān)控監(jiān)測系統(tǒng)現(xiàn)場端建設技術規(guī)范
- 教科版六年級科學下冊第一單元《小小工程師》背背默默知識點
- 學生體育習慣培養(yǎng)重點
評論
0/150
提交評論