版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
FacelandmarkdetectionusingCNN
Task
Theobjectiveofthistaskistopredictkeypointpositionsonfaceimages.
Usage
trackingfacesinimagesandvideo
analyzingfacialexpressions
detectingdysmorphicfacialsignsformedicaldiagnosis
biometrics/facerecognition
Method
DeepLearning
CNNregression
ComputerVision
FacelandmarkdetectionusingCNN
SomeDatasets
CUHK: MALF&MTLF
12995,20000images
5keypoints
Kaggle: FacialKeypointDetection
7049Images
96x96
15keypoints
ComputerVision
/notes/2014/12/17/using-
convolutional-neural-nets-to-detect-facial-keypoints-thutttop:r/ia/lm/#mthlaeb-.hk/projects/TCDCN.ht
FacelandmarkdetectionusingCNN
Method
CNN
Regression
Whatlossshouldweuse?
ComputerVision
.hk/projects/TCDCN.ht
ml
FacelandmarkdetectionusingCNN
Method
CNN
Regression
Whatlossshouldweuse?
Consider:
Whatlabelwehave?
Whattargetwewant?
Howtocomputeloss?
ComputerVision
.hk/projects/TCDCN.ht
ml
FacelandmarkdetectionusingCNN
Method
CNN
Regression
Howtocomputeloss?
Whatlossshouldweuse?
ComputerVision
Consider:
Whatlabelwehave?
Keypoints,
e.g.,{(x1,y1),(x2,y2)…
Whattargetwewant?
Locationsofkeypoints
.hk/projects/TCDC
N.html
FacelandmarkdetectionusingCNN
?
ComputerVision
10 E
/.hk/projects/TCDCN.html
10
GroundTruth
Loss
FacelandmarkdetectionusingCNN
?
ComputerVision
FacelandmarkdetectionusingCNN
?
ComputerVision
Schedule
FacelandmarkdetectionusingCNN
CNNregression
Faciallandmarkdetection
GenderClassificationonFaceimageusingCNN
TransferLearning
AdvancedTopics
RNN/LSTMincomputervision
Cuttingedgetechniquesindeeplearning
ClassSummary
ComputerVision
FaceGenderClassification
GenderClassificationonFaceimageusingCNN
Problem:
Estimategender(Male/Female)givenafaceimage
Data:
FaceImage
GenderInformation(2classproblem)
Database:
CUHK:MALF&MTLF
CUHK:CelebA
ComputerVision
FaceGenderClassification
GenderClassificationonFaceimageusingCNN
Method:
CNN
Whatisourtrainingdata?
Faceimage
Gender:{0,1}=>{Male,Female}
Howtoorganizethetraining?
Trainfromscratch
Usepre-trainedmodelandfine-tuning
Whatnetworkshouldweuse?
Whatlossshouldweuse?
Howtotestourmodel?
ComputerVision
FaceGenderClassification
GenderClassificationonFaceimageusingCNN
Whatisourtrainingdata?
Faceimage
Gender:{0,1}=>{Male,Female}
Howtoorganizethetraining?
Trainfromscratch
Usepre-trainedmodelandfine-tuning
Whatnetworkshouldweuse?
AlexNet,VGG,ResNet18,etc…
Whatlossshouldweuse?
Softmax
CrossEntropy
Howtotestourmodel?
ComputerVision
FaceGenderClassification
GenderClassificationonFaceimageusingCNN
Method:
Usepre-trainedmodelandfine-tuning
Idea:
FaceRecognitionmodel
+
FacewithGenderData
+
Training
=
GenderModel
ComputerVision
Fine-tuningtakesanalreadylearnedmodel,adaptsthearchitecture,andresumestrainingfromthealreadylearnedmodelweights.
FaceGenderClassification
GenderClassificationonFaceimageusingCNN
Method:
Usepre-trainedmodelandfine-tuning
Idea:
FaceRecognitionmodel
+
FacewithGenderData
+
Training
=
GenderModel
TransferLearning
ComputerVision
FaceGenderClassification
GenderClassificationonFaceimageusingCNN
Method:
Usepre-trainedmodelandfine-tuning
Pre-trainedmodel:
VGGFaceRecognitionmodel(forclassificatione.g.,1000identities)
Fine-tunethenet:
FaceGenderData
Similarnetworkarchitecture
Changelastlayer(s)tothegenderclassificationtask
Extension:
Task1
Task2
Task3
Multi-taskDCNN
ComputerVision
Schedule
FacelandmarkdetectionusingCNN
CNNregression
Faciallandmarkdetection
GenderClassificationonFaceimageusingCNN
TransferLearning
AdvancedTopics
RNN/LSTMincomputervision
Activationsfunctions
AdvancedLayers
AdvancedNetworkarchitectures
TrainingTricks
ClassSummary
ComputerVision
RNN/LSTMinComputerVision
RecurrentNeuralNetwork(RNN)
ComputerVision
Aloopallowsinformationtobepassedfromonestepofthenetworktothenext
http://colah.github.io/posts/2015-08-Understanding-
RNN/LSTMinComputerVision
RecurrentNeuralNetwork(RNN)
WhyweneedRNN?
ComputerVision
Handwave?Standup?
RNN/LSTMinComputerVision
RecurrentNeuralNetwork(RNN)
RNNProblem
LSTM
Long-ShortTermMemory
ComputerVision
StandardRNN
LSTM
RNN/LSTMinComputerVision
RecurrentNeuralNetwork(RNN)
ApplicationsinComputervision:
ObjectTracking
ActionRecognition
VideoCaptioning
Videoanalysis
Imagegeneralization
Applicationsinothermlarea:
Translation
NLP(e.g.,wordprediction)
Speechrecognition
ComputerVision
AdvancedTopics
ActivationFunction
Sigmoid,Tanh,ReLU
AdvancedActivationFunctions:
LeakyReLU
ParametricReLU
RandomizedRuLU
ELU
ComputerVision
AdvancedTopics
AdvancedLayers
DilatedConv
BNLayer
RecurrentLayer
RNN
LSTM
ComputerVision
AdvancedTopics
AdvancedLayers
DilatedConv
ComputerVision
Dilatedconvolutions“inflate”thekernelbyinsertingspacesbetweenthekernelelements.
largerreceptivefield,
efficientcomputationandlessermemoryconsumption
Poolingmakesreceptivefieldsmallerandsmaller
Up-samplingcannotrestorelostinformation
Dilatedconvhelpkeepthereceptivefiled
AdvancedTopics
BNLayer
IssuesWithTrainingDeepNeuralNetworks
InternalCovariateshift
VanishingGradient
AdvantagesofBN:
Reducesinternalcovariantshift.
t
Reducesthedependenceofgradientsonscaleoftheparametersortheirinitialvalues.
Regularizesthemodelandreducestheneedfordropout,localresponsenormalizationandotherregularizationtechniques.
Allowsuseofsaturatingnonlinearitiesandhigherlearningrates.
ComputerVision
AdvancedTopics
NetworkStructure
DenseNet
ResNext
SqueezeNet
TinyDarknet
ComputerVision
AdvancedTopics
NetworkStructure
DenseNet
ResNext
SqueezeNet
TinyDarknet
ComputerVision
AdvancedTopics
NetworkStructure
DenseNet
ResNext
SqueezeNet
TinyDarknet
ComputerVision
AdvancedTopics
NetworkStructure
DenseNet
ResNext
SqueezeNet
TinyDarknet
ComputerVision
AdvancedTopics
NetworkStructure
1x1conv
Combinemultiplechannels
Dimensionreduction
ComputerVision
1x1convWith32
56 filters 56
Eachfilter
56 hassize 56
64 1x1x64,and 32
performsa64dimdotproduct
TrainingTricks
GPU 分布式訓(xùn)練
Synchronous
PlacesanindividualmodelreplicaoneachGPU.SplitthebatchacrosstheGPUs.
UpdatesmodelparameterssynchronouslybywaitingforallGPUstofinishprocessingabatchofdata.
Asynchronous
ComputerVision
TrainingTricks
GPU 分布式訓(xùn)練
Synchronous
“l(fā)astexecutor”effect
ComputerVision
synchronoussystemshavetowaitontheslowestexecutorbeforecompletingeachiteration.
TrainingTricks
GPU 分布式訓(xùn)練
Asynchronous
Stalegradientproblem
ComputerVision
TrainingTricks
DataNormalization
InputData
Continuousdata:
Normalizeto[0,1]or[-1,1],ormean=0&std=1
DiscreteLabeldata: Onehotvector
E.g.,3classes[0,1,2] ?[[1,0,0],[0,1,0],[0,0,1]]
ComputerVision
Note:Normalizationmethodintrainingantestingmustbethesame!
TrainingTricks
WeightInitialization
Principle:
Nottoolarge,Nottoosmall
Xavier
Gaussian
biasusuallysettoconstant(e.g.,0)
Etc.
ComputerVision
TrainingTricks
EpochandIteration
EpochUsually>>1
#ofIterations=#ofEpoch*data_size/batch_size
Small#ofEpoch:
Underfitting
Large#ofEpoch:
Overfitting
Howtodecide?
Earlystopping
ComputerVision
TrainingTricks
LearningRate
Oneofthemostimportantparamintraining
Toosmall:
Slow,sometimesnotconverge
Toolarge:
Noconvergence
Usuallyrange:
0.1---1e-6
Howtodecide?
Visualizetraining
TrainingfromscratchandFinetuning
ComputerVision
TrainingTricks
Activationfunction
Hiddenlayers:
ReLUandLeakyRelu
LSTM:
SigmoidandTanh
ComputerVision
OutputLayers:
Classification:Softmax
Regression:Identity
no-opactivation,usefultoimplementlinearbottleneck,returnsf(x)=x
TrainingTricks
Lossfunction:
Yournet’spurposedeterminethelossfunctionyouuse.
Forexample,
inclassificationproblem:usemulticlasscrossentropyloss.
inregressionproblem:useEuclideanloss.
ComputerVision
TrainingTricks
Regularization:
Helppreventoverfitting
L1andL2regularization
UsuallyL2,decay1e-3to1e-6
Dropout
Usually0.3or0.5
EarlyStopping
ComputerVision
TrainingTricks
BatchSize:
Toosmall:
Slowtraining
DonotutilizeGPU
Toolarge:
Overfitting(ICLR2017paper)
Usually:
16,32,128…
ComputerVision
TrainingTricks
Solver/Optimizer:
SGD
Momentum
Adam/RMSProp
ComputerVision
Schedule
FacelandmarkdetectionusingCNN
CNNregression
Faciallandmarkdetection
GenderClassificationonFaceimageusingCNN
TransferLearning
AdvancedTopics
RNN/LSTMincomputervision
Activationsfunctions
AdvancedLayers
AdvancedNetworkarchitectures
TrainingTricks
ClassSummary
ComputerVision
ComputerVision
ClassSummary
Week 1
機(jī)器的力量:將數(shù)據(jù)轉(zhuǎn)化為知識(shí)
機(jī)器學(xué)習(xí)的整體概念
監(jiān)督學(xué)習(xí),非監(jiān)督學(xué)習(xí),增強(qiáng)學(xué)習(xí)
機(jī)器學(xué)習(xí)系統(tǒng)的Roadmap
Machinelearning經(jīng)典算法:機(jī)器學(xué)習(xí)≠深度學(xué)習(xí)
K-meansclustering
K-NN,SVM
Regression Task
Experience
LearnedProgram
Tas
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44855-2024冷卻塔節(jié)水管理規(guī)范
- 2024年度互聯(lián)網(wǎng)保險(xiǎn)銷售代理合作協(xié)議書3篇
- 2024年智慧家居造價(jià)咨詢合同補(bǔ)充協(xié)議范本3篇
- 2024年度制冷設(shè)備生產(chǎn)安全責(zé)任保險(xiǎn)合同3篇
- 2024中間商合作協(xié)議范本:醫(yī)藥產(chǎn)品代理合同3篇
- 2024年招商引資居間合同模板與合同效力確認(rèn)3篇
- 2024全面升級(jí)環(huán)衛(wèi)灑水車租賃與維護(hù)服務(wù)合同范本3篇
- 2024制作安裝商業(yè)樓宇電子顯示屏合同范本3篇
- 2024年度航空航天實(shí)驗(yàn)室技術(shù)資料保密協(xié)議書樣本3篇
- 2024年國際教育機(jī)構(gòu)外語教師聘用協(xié)議參考3篇
- 人教版(2024版)七年級(jí)上冊(cè)英語期末模擬測試卷 3套(含答案)
- 特殊困難老年人基本信息登記表
- 貴州省銅仁市2023-2024學(xué)年高二上學(xué)期期末質(zhì)量監(jiān)測試題 地理 含答案
- 人教版(2024新版)七年級(jí)上冊(cè)數(shù)學(xué)全冊(cè)重點(diǎn)知識(shí)點(diǎn)講義
- 2022-2023學(xué)年北京市海淀區(qū)七年級(jí)上學(xué)期期末語文試卷(含答案解析)
- 化療藥物外滲預(yù)防及處理-中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)課件
- 計(jì)算機(jī)專業(yè)大學(xué)生職業(yè)生涯發(fā)展展示
- 電氣設(shè)備運(yùn)行與維護(hù)ppt課件(完整版)
- 政務(wù)禮儀培訓(xùn)課件(PPT66頁)rar
- 汽車維修應(yīng)急救援預(yù)案及處理措施方案
- 甲醇工藝流程圖
評(píng)論
0/150
提交評(píng)論