高考數(shù)學(xué)二輪復(fù)習(xí)核心專題講練:函數(shù)與導(dǎo)數(shù)第3講 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值原卷版_第1頁
高考數(shù)學(xué)二輪復(fù)習(xí)核心專題講練:函數(shù)與導(dǎo)數(shù)第3講 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值原卷版_第2頁
高考數(shù)學(xué)二輪復(fù)習(xí)核心專題講練:函數(shù)與導(dǎo)數(shù)第3講 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值原卷版_第3頁
高考數(shù)學(xué)二輪復(fù)習(xí)核心專題講練:函數(shù)與導(dǎo)數(shù)第3講 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值原卷版_第4頁
高考數(shù)學(xué)二輪復(fù)習(xí)核心專題講練:函數(shù)與導(dǎo)數(shù)第3講 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值原卷版_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第3講利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值目錄第一部分:知識強化第二部分:重難點題型突破突破一:導(dǎo)數(shù)的幾何意義突破二:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性角度1:利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間(不含參)角度2:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)角度3:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)區(qū)間角度4:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)角度5:已知函數(shù)SKIPIF1<0有三個單調(diào)區(qū)間突破三:利用導(dǎo)數(shù)研究函數(shù)的極值與最值角度1:求已知函數(shù)的極值(點)、最值角度2:根據(jù)函數(shù)的極值(點)、最值,求參數(shù)突破四:含參問題討論單調(diào)性角度1:導(dǎo)函數(shù)有效部分是一次型(或可化為一次型)角度2:導(dǎo)函數(shù)有效部分是二次型(或可化為二次型)且可因式分解型角度3:導(dǎo)函數(shù)有效部分是二次型(或可化為二次型)且不可因式分解型第三部分:沖刺重難點特訓(xùn)第一部分:知識強化1、導(dǎo)數(shù)的幾何意義函數(shù)SKIPIF1<0在點SKIPIF1<0處的導(dǎo)數(shù)的幾何意義,就是曲線SKIPIF1<0在點SKIPIF1<0處的切線的斜率SKIPIF1<0,即SKIPIF1<0,相應(yīng)的切線方程為SKIPIF1<0.(1)在型求切線方程已知:函數(shù)SKIPIF1<0的解析式.計算:函數(shù)SKIPIF1<0在SKIPIF1<0或者SKIPIF1<0處的切線方程.步驟:第一步:計算切點的縱坐標SKIPIF1<0(方法:把SKIPIF1<0代入原函數(shù)SKIPIF1<0中),切點SKIPIF1<0.第二步:計算切線斜率SKIPIF1<0.第三步:計算切線方程.切線過切點SKIPIF1<0,切線斜率SKIPIF1<0。根據(jù)直線的點斜式方程得到切線方程:SKIPIF1<0.(2)過型求切線方程已知:函數(shù)SKIPIF1<0的解析式.計算:過點SKIPIF1<0(無論該點是否在SKIPIF1<0上)的切線方程.步驟:第一步:設(shè)切點SKIPIF1<0第二步:計算切線斜率SKIPIF1<0;計算切線斜率SKIPIF1<0;第三步:令:SKIPIF1<0,解出SKIPIF1<0,代入SKIPIF1<0求斜率第三步:計算切線方程.根據(jù)直線的點斜式方程得到切線方程:SKIPIF1<0.2、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(1)求已知函數(shù)(不含參)的單調(diào)區(qū)間①求SKIPIF1<0的定義域②求SKIPIF1<0③令SKIPIF1<0,解不等式,求單調(diào)增區(qū)間④令SKIPIF1<0,解不等式,求單調(diào)減區(qū)間注:求單調(diào)區(qū)間時,令SKIPIF1<0(或SKIPIF1<0)不跟等號.(2)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)①已知SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增SKIPIF1<0SKIPIF1<0,SKIPIF1<0恒成立.②已知SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減SKIPIF1<0SKIPIF1<0,SKIPIF1<0恒成立.注:已知單調(diào)性,等價條件中的不等式含等號.(3)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)區(qū)間①已知SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)增區(qū)間SKIPIF1<0SKIPIF1<0,SKIPIF1<0有解.②已知SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)減區(qū)間SKIPIF1<0SKIPIF1<0,SKIPIF1<0有解.(4)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)SKIPIF1<0SKIPIF1<0,使得SKIPIF1<0(SKIPIF1<0是變號零點)3、函數(shù)的極值一般地,對于函數(shù)SKIPIF1<0,(1)若在點SKIPIF1<0處有SKIPIF1<0,且在點SKIPIF1<0附近的左側(cè)有SKIPIF1<0,右側(cè)有SKIPIF1<0,則稱SKIPIF1<0為SKIPIF1<0的極小值點,SKIPIF1<0叫做函數(shù)SKIPIF1<0的極小值.(2)若在點SKIPIF1<0處有SKIPIF1<0,且在點SKIPIF1<0附近的左側(cè)有SKIPIF1<0,右側(cè)有SKIPIF1<0,則稱SKIPIF1<0為SKIPIF1<0的極大值點,SKIPIF1<0叫做函數(shù)SKIPIF1<0的極大值.(3)極小值點與極大值點通稱極值點,極小值與極大值通稱極值.注:極大(小)值點,不是一個點,是一個數(shù).4、函數(shù)的最大(?。┲狄话愕兀绻趨^(qū)間SKIPIF1<0上函數(shù)SKIPIF1<0的圖象是一條連續(xù)不斷的曲線,那么它必有最大值與最小值.設(shè)函數(shù)SKIPIF1<0在SKIPIF1<0上連續(xù),在SKIPIF1<0內(nèi)可導(dǎo),求SKIPIF1<0在SKIPIF1<0上的最大值與最小值的步驟為:(1)求SKIPIF1<0在SKIPIF1<0內(nèi)的極值;(2)將函數(shù)SKIPIF1<0的各極值與端點處的函數(shù)值SKIPIF1<0,SKIPIF1<0比較,其中最大的一個是最大值,最小的一個是最小值.5、函數(shù)的最值與極值的關(guān)系(1)極值是對某一點附近(即局部)而言,最值是對函數(shù)的定義區(qū)間SKIPIF1<0的整體而言;(2)在函數(shù)的定義區(qū)間SKIPIF1<0內(nèi),極大(?。┲悼赡苡卸鄠€(或者沒有),但最大(?。┲抵挥幸粋€(或者沒有);(3)函數(shù)SKIPIF1<0的極值點不能是區(qū)間的端點,而最值點可以是區(qū)間的端點;(4)對于可導(dǎo)函數(shù),函數(shù)的最大(小)值必在極大(小)值點或區(qū)間端點處取得.第二部分:重難點題型突破突破一:導(dǎo)數(shù)的幾何意義1.(2022·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0,則過點SKIPIF1<0可作曲線SKIPIF1<0的切線的條數(shù)為(

)A.0 B.1 C.2 D.32.(2022·河南河南·模擬預(yù)測(理))已知SKIPIF1<0是奇函數(shù),則過點SKIPIF1<0向曲線SKIPIF1<0可作的切線條數(shù)是(

)A.1 B.2 C.3 D.不確定3.(2022·江蘇南通·模擬預(yù)測)已知過點SKIPIF1<0作曲線SKIPIF1<0的切線有且僅有SKIPIF1<0條,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<04.(2022·河南省淮陽中學(xué)模擬預(yù)測(理))已知SKIPIF1<0,過原點作曲線SKIPIF1<0的切線,則切點的橫坐標為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·安徽·合肥一六八中學(xué)模擬預(yù)測(文))若直線SKIPIF1<0是曲線SKIPIF1<0的切線,也是曲線SKIPIF1<0的切線,則SKIPIF1<0__________.6.(2022·福建省漳州第一中學(xué)模擬預(yù)測)已知直線SKIPIF1<0是曲線SKIPIF1<0的切線,則SKIPIF1<0___________.7.(2022·山東師范大學(xué)附中模擬預(yù)測)已知函數(shù)SKIPIF1<0,若存在一條直線同時與兩個函數(shù)圖象相切,則實數(shù)a的取值范圍__________.8.(2022·廣東佛山·模擬預(yù)測)已知函數(shù)SKIPIF1<0,函數(shù)在SKIPIF1<0處的切線方程為____________.若該切線與SKIPIF1<0的圖象有三個公共點,則SKIPIF1<0的取值范圍是____________.突破二:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性角度1:利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間(不含參)1.(2022·福建·莆田一中高二期中)若函數(shù)SKIPIF1<0,則SKIPIF1<0的一個單調(diào)遞增區(qū)間是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(多選)(2022·湖北黃岡·高三階段練習(xí))下列區(qū)間中能使函數(shù)SKIPIF1<0單調(diào)遞增的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·遼寧省實驗中學(xué)東戴河分校高三階段練習(xí))已知函數(shù)SKIPIF1<0,則SKIPIF1<0的單調(diào)減區(qū)間為______.4.(2022·全國·高二單元測試)已知函數(shù)SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最大值為______.角度2:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)1.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·全國·高二課時練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),則實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國·高二學(xué)業(yè)考試)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·重慶市朝陽中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則實數(shù)SKIPIF1<0的取值范圍是_____.5.(2022·江蘇·常熟外國語學(xué)校高二階段練習(xí))若函數(shù)SKIPIF1<0的單調(diào)減區(qū)間是SKIPIF1<0,則實數(shù)SKIPIF1<0的值為__________.6.(2022·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則實數(shù)SKIPIF1<0的取值范圍是______角度3:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)區(qū)間1.(2022·河南信陽·高二期中(理))已知函數(shù)SKIPIF1<0,在其定義域內(nèi)的子區(qū)間SKIPIF1<0上不單調(diào),則實數(shù)m的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·河南·溫縣第一高級中學(xué)高二階段練習(xí)(理))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0存在單調(diào)遞減區(qū)間,則SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0角度4:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)1.(2022·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不是單調(diào)函數(shù),則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(多選)(2022·全國·高二單元測試)已知函數(shù)SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上不單調(diào)的一個充分不必要條件有(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·天津市武清區(qū)楊村第三中學(xué)高三階段練習(xí))函數(shù)SKIPIF1<0在SKIPIF1<0上不單調(diào),則實數(shù)a的取值范圍是_____.角度5:已知函數(shù)SKIPIF1<0有三個單調(diào)區(qū)間1.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0存在三個單調(diào)區(qū)間,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·江西省信豐中學(xué)高二階段練習(xí)(文))若函數(shù)SKIPIF1<0在定義域SKIPIF1<0上恰有三個單調(diào)區(qū)間,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0突破三:利用導(dǎo)數(shù)研究函數(shù)的極值與最值角度1:求已知函數(shù)的極值(點)、最值1.(2022·廣西河池·模擬預(yù)測(理))已知函數(shù)SKIPIF1<0有兩個極值點SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的極大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·青?!ご笸ɑ刈逋磷遄灾慰h教學(xué)研究室二模(理))設(shè)函數(shù)SKIPIF1<0,則下列不是函數(shù)SKIPIF1<0極大值點的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·江西南昌·一模(理))已知函數(shù)SKIPIF1<0,若不等式SKIPIF1<0的解集為SKIPIF1<0,且SKIPIF1<0,則函數(shù)SKIPIF1<0的極大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.SKIPIF1<04.(2022·四川省綿陽南山中學(xué)模擬預(yù)測(理))已知函數(shù)SKIPIF1<0的零點為SKIPIF1<0,SKIPIF1<0零點為SKIPIF1<0,則SKIPIF1<0的最大值為(

)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·四川省南充高級中學(xué)模擬預(yù)測(文))已知函數(shù)SKIPIF1<0,方程SKIPIF1<0恰有兩個不同的實數(shù)根SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0的最小值與最大值的和(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2022·河南·南陽中學(xué)模擬預(yù)測(文))已知函數(shù)SKIPIF1<0存在兩個極值點SKIPIF1<0.(1)求SKIPIF1<0的取值范圍;(2)求SKIPIF1<0的最小值.7.(2022·四川成都·模擬預(yù)測(理))SKIPIF1<0(SKIPIF1<0且SKIPIF1<0).(1)當SKIPIF1<0時,求經(jīng)過SKIPIF1<0且與曲線SKIPIF1<0相切的直線;(2)記SKIPIF1<0的極小值為SKIPIF1<0,求SKIPIF1<0的最大值.8.(2022·湖南省臨澧縣第一中學(xué)二模)已知函數(shù)SKIPIF1<0.(1)當SKIPIF1<0時,若SKIPIF1<0在SKIPIF1<0上存在最大值,求m的取值范圍;(2)討論SKIPIF1<0極值點的個數(shù).9.(2022·全國·模擬預(yù)測)設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當SKIPIF1<0時,證明:SKIPIF1<0在SKIPIF1<0上無極值;(2)設(shè)SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0在SKIPIF1<0上只有一個極大值點.角度2:根據(jù)函數(shù)的極值(點)、最值,求參數(shù)1.(2022·陜西·蒲城縣蒲城中學(xué)高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0有三個極值點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·江西贛州·高三期中(理))已知函數(shù)SKIPIF1<0存在唯一的極值點,則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·江西贛州·高三階段練習(xí)(文))等比數(shù)列SKIPIF1<0中的項SKIPIF1<0,SKIPIF1<0是函數(shù)SKIPIF1<0的極值點,則SKIPIF1<0(

)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·江西·萍鄉(xiāng)市第二中學(xué)高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0,則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·天津市瑞景中學(xué)高三期中)當SKIPIF1<0時,函數(shù)SKIPIF1<0取得最大值SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.46.(2022·河南·高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0在SKIPIF1<0上的極小值點;(2)若SKIPIF1<0的最大值大于SKIPIF1<0的最大值,求SKIPIF1<0的取值范圍.7.(2022·河南·高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0.(1)當SKIPIF1<0時,求SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0在區(qū)間SKIPIF1<0上存在極值點,求實數(shù)a的取值范圍.SKIPIF1<08.(2022·北京海淀·高三期中)已知函數(shù)SKIPIF1<0.①當SKIPIF1<0時,SKIPIF1<0的極值點個數(shù)為__________;②若SKIPIF1<0恰有兩個極值點,則SKIPIF1<0的取值范圍是__________.突破四:含參問題討論單調(diào)性角度1:導(dǎo)函數(shù)有效部分是一次型(或可化為一次型)1.(2022·遼寧實驗中學(xué)模擬預(yù)測)已知函數(shù)SKIPIF1<0(1)請討論函數(shù)SKIPIF1<0的單調(diào)性2.(2022·河南河南·一模(文))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;3.(2022·吉林·長春市實驗中學(xué)二模)已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;4.(2022·黑龍江·哈爾濱市第一二二中學(xué)校模擬預(yù)測(文))已知函數(shù)SKIPIF1<0(1)若SKIPIF1<0,求SKIPIF1<0的極小值(2)討論函數(shù)SKIPIF1<0的單調(diào)性;角度2:導(dǎo)函數(shù)有效部分是二次型(或可化為二次型)且可因式分解型1.(2022·四川綿陽·一模(理))已知函數(shù)SKIPIF1<0(SKIPIF1<0).(1)討論函數(shù)SKIPIF1<0的單調(diào)性;2.(2022·天津·南開中學(xué)模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0為函數(shù)SKIPIF1<0的導(dǎo)函數(shù).(1)討論SKIPIF1<0的單調(diào)性;3.(2022·天津·二模)已知函數(shù)SKIPIF1<0.(1)當SKIPIF1<0時,求曲線SKIPIF1<0在SKIPIF1<0處的切線方程;(2)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;角度3:導(dǎo)函數(shù)有效部分是二次型(或可化為二次型)且不可因式分解型1.(2022·福建泉州·模擬預(yù)測)已知函數(shù)SKIPIF1<0(1)討論SKIPIF1<0的單調(diào)性;2.(2022·江西·模擬預(yù)測(理))已知函數(shù)SKIPIF1<0,(1)討論SKIPIF1<0的單調(diào)性;第三部分:沖刺重難點特訓(xùn)一、單選題1.(2022·全國·高二專題練習(xí))SKIPIF1<0,SKIPIF1<0在SKIPIF1<0處切線方程為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·福建·高三階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與曲線SKIPIF1<0相切,則SKIPIF1<0的最小值是(

)A.16 B.12 C.8 D.43.(2022·河南·濮陽油田實驗學(xué)校高三階段練習(xí)(文))“過點SKIPIF1<0可以作兩條與曲線SKIPIF1<0相切的直線”的充要條件是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·上海市行知中學(xué)高三階段練習(xí))“SKIPIF1<0”是“函數(shù)SKIPIF1<0在SKIPIF1<0上是嚴格增函數(shù)”的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.(2022·海南昌茂花園學(xué)校高三階段練習(xí))若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·江蘇·常州市第一中學(xué)高三開學(xué)考試)已知函數(shù)SKIPIF1<0,若SKIPIF1<0在區(qū)間上SKIPIF1<0單調(diào)遞增,則實數(shù)的a的范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<07.(2022·河南·高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0在SKIPIF1<0處有極值,則SKIPIF1<0的最小值為(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.48.(2022·四川省成都市新都一中高三階段練習(xí)(文))函數(shù)SKIPIF1<0,SKIPIF1<0的極值點為SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2022·貴州·盤州市聚道高中有限責(zé)任公司高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0,若對任意的SKIPIF1<0,都有SKIPIF1<0,則實數(shù)a的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.(2022·內(nèi)蒙古·赤峰二中高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0是定義域為SKIPIF1<0的奇函數(shù),且當SKIPIF1<0時,SKIPIF1<0.若函數(shù)SKIPIF1<0在SKIPIF1<0上的最小值為3,則實數(shù)a的值為(

)A.1 B.2 C.3 D.4二、多選題11.(2022·重慶八中高三階段練習(xí))已知函數(shù)SKIPIF1<0有兩個極值點SKIPIF1<0與SKIPIF1<0,且SKIPIF1<0,則下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<012.(2022·浙江·高二階段練習(xí))已知函數(shù)SKIPIF1<0,則下列判斷正確的是(

)A.直線SKIPIF1<0與曲線SKIPIF1<0相切B.函數(shù)SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論