版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
什么是軸對稱圖形?我們學(xué)過哪些軸對稱圖形?
如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形.回顧線段角等腰三角形矩形菱形等腰梯形正方形圓任何一條直徑所在的直線都是它的對稱軸.圓有哪些對稱軸?OOABCDE
是軸對稱圖形.大膽猜想已知:在⊙O中,CD是直徑,AB是弦,
CD⊥AB,垂足為E.
下圖是軸對稱圖形嗎?已知:在⊙O中,CD是直徑,AB是弦,
CD⊥AB,垂足為E.求證:AE=BE,AC=BC,AD=BD.⌒⌒⌒⌒證明:連結(jié)OA、OB,則OA=OB.∵CD
⊥AB
∴
∠OEA=∠OEB=90°∵OE=OE
∴Rt△AEO≌Rt△BEO
∴AE=BE∵CD
⊥AB
∴點A與點B關(guān)于CD對稱∵CD是直徑
∴兩半圓關(guān)于CD對稱
∴AD=BD,AC=BC⌒⌒⌒⌒DOABEC
垂直于弦的直徑平分弦,并且平分弦所對的兩條?。R要點DOABEC垂徑定理AE=BEAC=BCAD=BD⌒⌒⌒⌒CD是直徑,AB是弦,CD⊥AB①直徑過圓心②垂直于弦③平分弦④平分弦所對的優(yōu)?、萜椒窒宜鶎Φ牧踊☆}設(shè)結(jié)論DOABEC垂徑定理將題設(shè)與結(jié)論調(diào)換一個,命題還成立嗎?①直徑過圓心③平分弦②垂直于弦④平分弦所對優(yōu)?、萜椒窒宜鶎Φ牧踊?/p>
(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.命題DOABEC已知:CD是直徑,AB是弦,CD平分AB求證:CD⊥AB,AD=BD,AC=BC⌒⌒⌒⌒命題垂徑定理的推論1一個圓的任意兩條直徑總是互相平分,但它們不一定互相垂直.因此這里的弦如果是直徑,結(jié)論不一定成立.OABMNCD注意為什么強調(diào)這里的弦不是直徑?平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.知識要點DOABEC垂徑定理推論①直徑過圓心②垂直于弦③平分弦④平分弦所對的優(yōu)?、萜椒窒宜鶎Φ牧踊☆}設(shè)結(jié)論DOABEC
這五條進行排列組合,會出現(xiàn)多少個命題?條件結(jié)論命題①③②④⑤①④②③⑤①⑤②③④②③①④⑤②④①③⑤②⑤①③④③④①②⑤③⑤①②④④⑤①②③
平分弦(不是直徑)的直徑垂直于弦并且平分弦所對的兩條?。椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧.
弦的垂直平分線經(jīng)過圓心,并且平分這條弦所對的兩條?。怪庇谙也⑶移椒窒宜鶎Φ囊粭l弧的直線經(jīng)過圓心,并且平分弦和所對的另一條?。椒窒也⑶移椒窒宜鶎Φ囊粭l弧的直線經(jīng)過圓心,垂直于弦,并且平分弦所對的另一條?。椒窒宜鶎Φ膬蓷l弧的直線經(jīng)過圓心,并且垂直平分弦.3.垂徑定理的推論垂徑定理三角形d+h=rdhar有哪些等量關(guān)系?
在a,d,r,h中,已知其中任意兩個量,可以求出其它兩個量.
你知道趙州橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代人民勤勞與智慧的結(jié)晶.它的主橋是圓弧形,它的跨度(弧所對的弦的長)為37.4,拱高(弧的中點到弦的距離)為7.2m.
趙州橋主橋拱的半徑是多少?實際問題垂徑定理的應(yīng)用解:由題意可知:AB=37.4,CD=7.2,OD=OC-CD=R-7.2BODACR解得R≈27.9(m)在Rt△OAD中,即:R2=18.72+(R-7.2)2∴趙州橋的主橋拱半徑約為27.9m.OA2=AD2+OD2
你知道趙州橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代人民勤勞與智慧的結(jié)晶.它的主橋是圓弧形,它的跨度(弧所對的弦的長)為37.4,拱高(弧的中點到弦的距離)為7.2m.∵OE過圓心,OE⊥AB∴
練習(xí)1.在⊙O中,弦AB的長為8cm,圓心O到AB的距離為3cm,求⊙O的半徑.·OABE解:答:⊙O的半徑為5cm.在Rt△AEO中,,OE過圓心。
練習(xí)2.在⊙O中,AB、AC為互相垂直且相等的兩條弦,OD⊥AB于D,OE⊥AC于E,求證:四邊形ADOE是正方形.D·OABCE證明:∴四邊形ADOE為矩形,又∵AC=AB∴AE=AD∴四邊形ADOE為正方形.
練習(xí)3.在以O(shè)為圓心的兩個同心圓中,大圓的弦AB交小圓于C,D兩點.求證:AC=BD.證明:過O作OE⊥AB,垂足為E,則AE=BE,CE=DE.
AE-CE=BE-DE.所以,AC=BDE.ACDBO4.一條公路的轉(zhuǎn)變處是一段圓?。磮D中弧CD,點O是弧CD的圓心),其中CD=600m,E為弧CD上的一點,且OE⊥CD垂足為F,EF=90m.求這段彎路的半徑.解:連接OC.●OCDEF┗
OE過圓心。練習(xí)4.已知:⊙O中弦AB∥CD.求證:AC=BD⌒⌒證明:作直徑MN⊥AB.∵AB∥CD,∴MN⊥CD.則AM=BM,CM=DM
AM-CM=BM-DM∴AC=BD⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒.MCDABON課堂小結(jié)1.圓是軸對稱圖形任何一條直徑所在的直線都是它的對稱軸.O
垂直于弦的直徑平分弦,并且平分弦所對的兩條弧.DOABEC2.垂徑定理平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條?。?.垂徑定理推論知識要點
經(jīng)常是過圓心作弦的垂線,或作垂直于弦的直徑,連結(jié)半徑等輔助線,為應(yīng)用垂徑定理創(chuàng)造條件.4.解決有關(guān)弦的問題
課堂練習(xí):1.在直徑是20cm的⊙O中,的度數(shù)是60°,那么弦AB的弦心距是________.cm2.弓形的弦長為6cm,弓形的高為2cm,則這弓形所在的圓的半徑為________.cm3.已知在⊙O中,弦AB的長為8cm,圓心O到AB的距離為3cm,求⊙O的半徑.解:連結(jié)OA.過O作OE⊥AB,垂足為E,則OE=3cm,AE=BE.∵AB=8cm∴AE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球高速RDF制粒機行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球清醒夢設(shè)備行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球膨脹式氣體壓縮機行業(yè)調(diào)研及趨勢分析報告
- 智能制造產(chǎn)業(yè)基地建設(shè)合同
- 法律顧問的服務(wù)合同范本
- 2025安裝工程技術(shù)咨詢合同
- 2025合同模板店面轉(zhuǎn)讓合同雙方范本
- 2025合同模板城市建筑垃圾處理特許經(jīng)營協(xié)議示范文本范本
- 提高英語聽力與口語能力的方法主題班會
- 防水購銷合同范本年
- 小學(xué)六年級數(shù)學(xué)上冊《簡便計算》練習(xí)題(310題-附答案)
- 地理標(biāo)志培訓(xùn)課件
- 2023行政主管年終工作報告五篇
- 2024年中國養(yǎng)老產(chǎn)業(yè)商學(xué)研究報告-銀發(fā)經(jīng)濟專題
- 培訓(xùn)如何上好一堂課
- 高教版2023年中職教科書《語文》(基礎(chǔ)模塊)下冊教案全冊
- 2024醫(yī)療銷售年度計劃
- 稅務(wù)局個人所得稅綜合所得匯算清繳
- 人教版語文1-6年級古詩詞
- 上學(xué)期高二期末語文試卷(含答案)
- 人教版英語七年級上冊閱讀理解專項訓(xùn)練16篇(含答案)
評論
0/150
提交評論