版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省孝義市)2024屆高一數(shù)學第一學期期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.專家對某地區(qū)新冠肺炎爆發(fā)趨勢進行研究發(fā)現(xiàn),從確診第一名患者開始累計時間(單位:天)與病情爆發(fā)系數(shù)之間,滿足函數(shù)模型:,當時,標志著疫情將要大面積爆發(fā),則此時約為()(參考數(shù)據(jù):)A. B.C. D.2.函數(shù)的零點所在的區(qū)間為()A.(-1,0) B.(0,)C.(,1) D.(1,2)3.設(shè)扇形的周長為,面積為,則扇形的圓心角的弧度數(shù)是()A.1 B.2C.3 D.44.已知函數(shù),且,則A.3 B.C.9 D.5.某幾何體的三視圖都是全等圖形,則該幾何體一定是()A.圓柱 B.圓錐C.三棱錐 D.球體6.已知是的三個內(nèi)角,設(shè),若恒成立,則實數(shù)的取值范圍是()A. B.C. D.7.函數(shù)的值域是A. B.C. D.8.已知函數(shù),下面關(guān)于說法正確的個數(shù)是()①的圖象關(guān)于原點對稱②的圖象關(guān)于y軸對稱③的值域為④在定義域上單調(diào)遞減A.1 B.2C.3 D.49.下列函數(shù)中,既是偶函數(shù)又在上是單調(diào)遞增的函數(shù)是()A. B.C. D.10.函數(shù)(A,ω,φ為常數(shù),A>0,ω>0,)的部分圖象如圖所示,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)是奇函數(shù),則實數(shù)__________.12.已知,則_________.13.某次學科測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.則參加測試的總?cè)藬?shù)為______,分數(shù)在之間的人數(shù)為______.14.已知,則______________15.在直角坐標系內(nèi),已知是圓上一點,折疊該圓兩次使點分別與圓上不相同的兩點(異于點)重合,兩次的折痕方程分別為和,若圓上存在點,使,其中的坐標分別為,則實數(shù)的取值集合為__________16.若關(guān)于x的不等式對一切實數(shù)x恒成立,則實數(shù)k的取值范圍是___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.從某小學隨機抽取100多學生,將他們的身高(單位:)數(shù)據(jù)繪制成頻率分布直方圖(如圖).(1)求直方圖中的值;(2)試估計該小學學生的平均身高;(3)若要從身高在三組內(nèi)的學生中,用分層抽樣的方法選取24人參加一項活動,則從身高在內(nèi)的學生中選取的人數(shù)應(yīng)為多少人?18.求函數(shù)的最小正周期19.已知函數(shù),(,且)(1)求函數(shù)的定義域;(2)判斷函數(shù)的奇偶性,并證明20.已知函數(shù)的最小值正周期是(1)求的值;(2)求函數(shù)的最大值,并且求使取得最大值的x的集合21.已知.(1)求,的值;(2)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】根據(jù)列式求解即可得答案.【題目詳解】解:因為,,所以,即,所以,由于,故,所以,所以,解得.故選:B.【題目點撥】本題解題的關(guān)鍵在于根據(jù)題意得,再結(jié)合已知得,進而根據(jù)解方程即可得答案,是基礎(chǔ)題.2、C【解題分析】應(yīng)用零點存在性定理判斷零點所在的區(qū)間即可.【題目詳解】由解析式可知:,∴零點所在的區(qū)間為.故選:C.3、B【解題分析】根據(jù)扇形的周長為,面積為,得到,解得l,r,代入公式求解.【題目詳解】因為扇形的周長為,面積為,所以,解得,所以,所以扇形的圓心角的弧度數(shù)是2故選:B4、C【解題分析】利用函數(shù)的奇偶性以及已知條件轉(zhuǎn)化求解即可【題目詳解】函數(shù)g(x)=ax3+btanx是奇函數(shù),且,因為函數(shù)f(x)=ax3+btanx+6(a,b∈R),且,可得=﹣3,則=﹣g()+6=3+6=9故選C【題目點撥】本題考查函數(shù)的奇偶性的應(yīng)用,函數(shù)值的求法,考查計算能力.已知函數(shù)解析式求函數(shù)值,可以直接將變量直接代入解析式從而得到函數(shù)值,直接代入較為繁瑣的題目,可以考慮函數(shù)的奇偶性的應(yīng)用,利用部分具有奇偶性的特點進行求解,就如這個題目.5、D【解題分析】任意方向上的視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓【題目詳解】球、長方體、三棱錐、圓錐中,任意方向上的視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是等圓,故答案為:D【題目點撥】本題考查簡單空間圖形的三視圖,本題解題的關(guān)鍵是看出各個圖形的在任意方向上的視圖,本題是一個基礎(chǔ)題6、D【解題分析】先化簡,因為恒成立,所以恒成立,即恒成立,所以,故選D.考點:三角函數(shù)二倍角公式、降次公式;7、C【解題分析】函數(shù)中,因為所以.有.故選C.8、B【解題分析】根據(jù)函數(shù)的奇偶性定義判斷為奇函數(shù)可得對稱性,化簡解析式,根據(jù)指數(shù)函數(shù)的性質(zhì)可得單調(diào)性和值域.【題目詳解】因為的定義域為,,即函數(shù)為奇函數(shù),所以函數(shù)的圖象關(guān)于原點對稱,即①正確,②不正確;因為,由于單調(diào)遞減,所以單調(diào)遞增,故④錯誤;因為,所以,,即函數(shù)的值域為,故③正確,即正確的個數(shù)為2個,故選:B.【題目點撥】關(guān)鍵點點睛:理解函數(shù)的奇偶性和常見函數(shù)單調(diào)性簡單的判斷方式.9、B【解題分析】根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,即可得到結(jié)論.【題目詳解】根據(jù)函數(shù)奇偶性和單調(diào)性,A,(0,+∞)上是單調(diào)遞減,錯誤B,偶函數(shù),(0,+∞)上是遞增,正確.C,奇函數(shù),錯誤,D,x>0時,(0,+∞)上是函數(shù)遞減,錯誤,故選:B.【題目點撥】根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵10、B【解題分析】根據(jù)函數(shù)圖像易得,,求得,再將點代入即可求得得值.【題目詳解】解:由圖可知,,則,所以,所以,將代入得,所以,又,所以.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】根據(jù)給定條件利用奇函數(shù)的定義計算作答.【題目詳解】因函數(shù)是奇函數(shù),其定義域為R,則對,,即,整理得:,而不恒為0,于得,所以實數(shù).故答案為:12、【解題分析】由題意可得:點睛:熟記同角三角函數(shù)關(guān)系式及誘導公式,特別是要注意公式中的符號問題;注意公式的變形應(yīng)用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.這是解題中常用到的變形,也是解決問題時簡化解題過程的關(guān)鍵所在13、①.25②.4【解題分析】根據(jù)條件所給的莖葉圖看出分數(shù)在[50,60)之間的頻數(shù),由頻率分布直方圖看出分數(shù)在[50,60)之間的頻率和[90,100)之間的頻率一樣,繼而得到參加測試的總?cè)藬?shù)及分數(shù)在[80,90)之間的人數(shù).【題目詳解】成績在[50,60)內(nèi)的頻數(shù)為2,由頻率分布直方圖可以看出,成績在[90,100]內(nèi)同樣有2人,由,解得n=25,成績在[80,90)之間的人數(shù)為25-(2+7+10+2)=4人,所以參加測試人數(shù)n=25,分數(shù)在[80,90)的人數(shù)為4人.故答案為:25;4【題目點撥】本題主要考查莖葉圖、頻率分布直方圖,樣本的頻率分布估計總體的分布,屬于容易題.14、100【解題分析】分析得出得解.【題目詳解】∴故答案為:100【題目點撥】由函數(shù)解析式得到是定值是解題關(guān)鍵.15、【解題分析】由題意,∴A(3,2)是⊙C上一點,折疊該圓兩次使點A分別與圓上不相同的兩點(異于點A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,∴圓上不相同的兩點為B(1,4),D(5,4),∵A(3,2),BA⊥DA∴BD的中點為圓心C(3,4),半徑為1,∴⊙C的方程為(x﹣3)2+(y﹣4)2=4過P,M,N的圓的方程為x2+y2=m2,∴兩圓外切時,m的最大值為,兩圓內(nèi)切時,m的最小值為,故答案為[3,7]16、【解題分析】根據(jù)一元二次不等式與二次函數(shù)的關(guān)系,可知只需判別式,利用所得不等式求得結(jié)果.【題目詳解】不等式對一切實數(shù)x恒成立,,解得:故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)4人【解題分析】(1)根據(jù)頻率和為1,求出的值;(2)根據(jù)頻率分布直方圖,計算平均數(shù)即可(3)根據(jù)分層抽樣方法特點,計算出總?cè)藬?shù)以及應(yīng)抽取的人數(shù)比即可;【小問1詳解】解:因為直方圖中的各個矩形的面積之和為1,所以有,解得;【小問2詳解】解:根據(jù)頻率分布直方圖,計算平均數(shù)為【小問3詳解】解:由直方圖知,三個區(qū)域內(nèi)的學生總數(shù)為人,其中身高在內(nèi)的學生人數(shù)為人,所以從身高在范圍內(nèi)抽取的學生人數(shù)為人;18、【解題分析】利用三角函數(shù)恒等變換的應(yīng)用化簡函數(shù)解析式為,利用余弦函數(shù)的周期公式即可計算得解【題目詳解】先證明出,.因為,同理可證.,,因此,原函數(shù)的最小正周期【題目點撥】關(guān)鍵點點睛:本題考查余弦型函數(shù)最小正周期的求解,求解的關(guān)鍵就是利用三角恒等變換思想化簡函數(shù)解析式,本題中用到了積化和差公式,,在解題時應(yīng)先給與證明.19、(1)(2)函數(shù)為定義域上的偶函數(shù),證明見解析【解題分析】(1)由題意可得,解不等式即可求出結(jié)果;(2)令,證得,根據(jù)偶函數(shù)的定義即可得出結(jié)論.【小問1詳解】由,則有,得.則函數(shù)的定義域為【小問2詳解】函數(shù)為定義域上的偶函數(shù)令,則,又則,有成立則函數(shù)為在定義域上的偶函數(shù)20、(1);(2)最大值為,此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子商城銷售合同
- 星空班級主題課程設(shè)計
- 快消品行業(yè)營銷活動策劃與推廣方案
- 美容行業(yè)產(chǎn)品開發(fā)與營銷策略方案
- 物流行業(yè)案例高效配送平臺升級項目
- 射頻識別應(yīng)用系統(tǒng)課程設(shè)計java
- 天然級復盆子酮行業(yè)相關(guān)投資計劃提議
- 應(yīng)收賬款審計課程設(shè)計
- 網(wǎng)絡(luò)新聞采編與發(fā)布合同
- 2024年標準停車位租賃條款合同版
- 第二十五章 銳角的三角比(單元重點綜合測試)
- 低空經(jīng)濟的商業(yè)化路徑分析
- 七年級上冊道德與法治2023-2024期末試題附答案系列
- 代賬公司會計主管年終總結(jié)
- 創(chuàng)新思維訓練學習通超星期末考試答案章節(jié)答案2024年
- 網(wǎng)絡(luò)與信息安全管理員(高級技師)資格理論考試題及答案
- 廣東省肇慶市2023-2024學年高二上學期期末教學質(zhì)量檢測試題 政治試題 附答案
- 街道社區(qū)城管工作目標考核細則
- 國開電大??啤禗reamweaver網(wǎng)頁設(shè)計》2023-2024期末試題及答案(試卷號:2445)
- 體育概論(第二版)課件第三章體育目的
- 2024年《中華人民共和國監(jiān)察法》知識測試題庫及答案
評論
0/150
提交評論