![新課標(biāo)高中數(shù)學(xué)必修教案-集合_第1頁](http://file4.renrendoc.com/view/5291eb94a80275cff7aa0c9dfc0885f3/5291eb94a80275cff7aa0c9dfc0885f31.gif)
![新課標(biāo)高中數(shù)學(xué)必修教案-集合_第2頁](http://file4.renrendoc.com/view/5291eb94a80275cff7aa0c9dfc0885f3/5291eb94a80275cff7aa0c9dfc0885f32.gif)
![新課標(biāo)高中數(shù)學(xué)必修教案-集合_第3頁](http://file4.renrendoc.com/view/5291eb94a80275cff7aa0c9dfc0885f3/5291eb94a80275cff7aa0c9dfc0885f33.gif)
![新課標(biāo)高中數(shù)學(xué)必修教案-集合_第4頁](http://file4.renrendoc.com/view/5291eb94a80275cff7aa0c9dfc0885f3/5291eb94a80275cff7aa0c9dfc0885f34.gif)
![新課標(biāo)高中數(shù)學(xué)必修教案-集合_第5頁](http://file4.renrendoc.com/view/5291eb94a80275cff7aa0c9dfc0885f3/5291eb94a80275cff7aa0c9dfc0885f35.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版新課標(biāo)高中數(shù)學(xué)必修1精品教案
第一章-------------------------------------集合與函數(shù)概念
1.1---------------------------------集合
1.2---------------------------------函數(shù)及其表示
1.3---------------------------------函數(shù)的基本性質(zhì)
第二章-------------------------------------基本初等函數(shù)(Ⅰ)
2.1---------------------------------指數(shù)函數(shù)
2.2---------------------------------對(duì)數(shù)函數(shù)
2.3---------------------------------冪函數(shù)
第三章-----------------------------------函數(shù)的應(yīng)用
3.1---------------------------------函數(shù)與方程
3.2---------------------------------函數(shù)模型及其應(yīng)用
-課題:§1.1集合教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。課型:新授課教學(xué)目標(biāo):(1)通過實(shí)例,了解集合的含義,體會(huì)元素與集合的理解集合“屬于”關(guān)系;(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;教學(xué)重點(diǎn):集合的基本概念與表示方法;教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;教學(xué)過程:引入課題軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?在這里,集合是我們常用的一個(gè)詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對(duì)象的總體。閱讀課本P2-P3內(nèi)容新課教學(xué)(一)集合的有關(guān)概念集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識(shí)到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)總體。一般地,研究對(duì)象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡稱集。思考1:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,對(duì)學(xué)生的例子予以討論、點(diǎn)評(píng),進(jìn)而講解下面的問題。關(guān)于集合的元素的特征(1)確定性:設(shè)A是一個(gè)給定的集合,x是某一個(gè)具體對(duì)象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。(2)互異性:一個(gè)給定集合中的元素,指屬于這個(gè)集合的互不相同的個(gè)體(對(duì)象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素。(3)集合相等:構(gòu)成兩個(gè)集合的元素完全一樣元素與集合的關(guān)系;(1)如果a是集合A的元素,就說a屬于(belongto)A,記作a∈A(2)如果a不是集合A的元素,就說a不屬于(notbelongto)A,記作aA(或aA)(舉例)常用數(shù)集及其記法非負(fù)整數(shù)集(或自然數(shù)集),記作N正整數(shù)集,記作N*或N+;整數(shù)集,記作Z有理數(shù)集,記作Q實(shí)數(shù)集,記作R(二)集合的表示方法我們可以用自然語言來描述一個(gè)集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。列舉法:把集合中的元素一一列舉出來,寫在大括號(hào)內(nèi)。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;例1.(課本例1)思考2,引入描述法說明:集合中的元素具有無序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。描述法:把集合中的元素的公共屬性描述出來,寫在大括號(hào){}內(nèi)。具體方法:在大括號(hào)內(nèi)先寫上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個(gè)集合中元素所具有的共同特征。如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;例2.(課本例2)說明:(課本P5最后一段)思考3:(課本P6思考)強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素
{(x,y)|y=x2+3x+2}與{y|y=x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。辨析:這里的{}已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。說明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個(gè)元素時(shí),不宜采用列舉法。(三)課堂練習(xí)(課本P6練習(xí))歸納小結(jié)本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。作業(yè)布置書面作業(yè):習(xí)題1.1,第1-4題課題:§1.2集合間的基本關(guān)系教材分析:類比實(shí)數(shù)的大小關(guān)系引入集合的包含與相等關(guān)系了解空集的含義課型:新授課教學(xué)目的:(1)了解集合之間的包含、相等關(guān)系的含義;(2)理解子集、真子集的概念;(3)能利用Venn圖表達(dá)集合間的關(guān)系;(4)了解與空集的含義。教學(xué)重點(diǎn):子集與空集的概念;用Venn圖表達(dá)集合間的關(guān)系。教學(xué)難點(diǎn):弄清元素與子集、屬于與包含之間的區(qū)別;教學(xué)過程:引入課題復(fù)習(xí)元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填以下空白:(1)0N;(2)Q;(3)-1.5R類比實(shí)數(shù)的大小關(guān)系,如5<7,2≤2,試想集合間是否有類似的“大小”關(guān)系呢?(宣布課題)新課教學(xué)集合與集合之間的“包含”關(guān)系;A={1,2,3},B={1,2,3,4}集合A是集合B的部分元素構(gòu)成的集合,我們說集合B包含集合A;如果集合A的任何一個(gè)元素都是集合B的元素,我們說這兩個(gè)集合有包含關(guān)系,稱集合A是集合B的子集(subset)。記作:讀作:A包含于(iscontainedin)B,或B包含(contains)A當(dāng)集合A不包含于集合B時(shí),記作AB 用Venn圖表示兩個(gè)集合間的“包含”關(guān)系BBA 集合與集合之間的“相等”關(guān)系;,則中的元素是一樣的,因此即 練習(xí)結(jié)論:任何一個(gè)集合是它本身的子集真子集的概念若集合,存在元素,則稱集合A是集合B的真子集(propersubset)。記作:AB(或BA)讀作:A真包含于B(或B真包含A)舉例(由學(xué)生舉例,共同辨析)空集的概念(實(shí)例引入空集概念) 不含有任何元素的集合稱為空集(emptyset),記作: 規(guī)定: 空集是任何集合的子集,是任何非空集合的真子集。結(jié)論:eq\o\ac(○,1) eq\o\ac(○,2),且,則例題(1)寫出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化簡集合A={x|x-3>2},B={x|x5},并表示A、B的關(guān)系;課堂練習(xí)歸納小結(jié),強(qiáng)化思想兩個(gè)集合之間的基本關(guān)系只有“包含”與“相等”兩種,可類比兩個(gè)實(shí)數(shù)間的大小關(guān)系,同時(shí)還要注意區(qū)別“屬于”與“包含”兩種關(guān)系及其表示方法;作業(yè)布置書面作業(yè):習(xí)題1.1第5題提高作業(yè):eq\o\ac(○,1)已知集合,≥,且滿足,求實(shí)數(shù)的取值范圍。eq\o\ac(○,2)設(shè)集合,,試用Venn圖表示它們之間的關(guān)系。課題:§1.3集合的基本運(yùn)算教學(xué)目的:(1)理解兩個(gè)集合的并集與交集的的含義,會(huì)求兩個(gè)簡單集合的并集與交集;(2)理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集;(3)能用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會(huì)直觀圖示對(duì)理解抽象概念的作用。課型:新授課教學(xué)重點(diǎn):集合的交集與并集、補(bǔ)集的概念;教學(xué)難點(diǎn):集合的交集與并集、補(bǔ)集“是什么”,“為什么”,“怎樣做”;教學(xué)過程:引入課題我們兩個(gè)實(shí)數(shù)除了可以比較大小外,還可以進(jìn)行加法運(yùn)算,類比實(shí)數(shù)的加法運(yùn)算,兩個(gè)集合是否也可以“相加”呢?思考(P9思考題),引入并集概念。新課教學(xué)并集一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)A∪BABAA∪BABA?即:A∪B={x|x∈A,或x∈B}?Venn圖表示:說明:兩個(gè)集合求并集,結(jié)果還是一個(gè)集合,是由集合A與B的所有元素組成的集合(重復(fù)元素只看成一個(gè)元素)。例題(P9-10例4、例5)說明:連續(xù)的(用不等式表示的)實(shí)數(shù)集合可以用數(shù)軸上的一段封閉曲線來表示。問題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問號(hào)部分)還應(yīng)是我們所關(guān)心的,我們稱其為集合A與B的交集。交集一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。記作:A∩B 讀作:“A交B” 即:A∩B={x|∈A,且x∈B}交集的Venn圖表示說明:兩個(gè)集合求交集,結(jié)果還是一個(gè)集合,是由集合A與B的公共元素組成的集合。例題(P9-10例6、例7)拓展:求下列各圖中集合A與B的并集與交集AABA(B)ABBABA說明:當(dāng)兩個(gè)集合沒有公共元素時(shí),兩個(gè)集合的交集是空集,而不能說兩個(gè)集合沒有交集補(bǔ)集全集:一般地,如果一個(gè)集合含有我們所研究問題中所涉及的所有元素,那么就稱這個(gè)集合為全集(Universe),通常記作U。補(bǔ)集:對(duì)于全集U的一個(gè)子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對(duì)于全集U的補(bǔ)集(complementaryset),簡稱為集合A的補(bǔ)集,記作:CUA即:CUA={x|x∈U且x∈A}補(bǔ)集的Venn圖表示說明:補(bǔ)集的概念必須要有全集的限制例題(P12例8、例9)求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法。集合基本運(yùn)算的一些結(jié)論:A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩AAA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A(CUA)∪A=U,(CUA)∩A=若A∩B=A,則AB,反之也成立若A∪B=B,則AB,反之也成立若x∈(A∩B),則x∈A且x∈B若x∈(A∪B),則x∈A,或x∈B課堂練習(xí)
(1)設(shè)A={奇數(shù)}、B={偶數(shù)},則A∩Z=A,B∩Z=B,A∩B=
(2)設(shè)A={奇數(shù)}、B={偶數(shù)},則A∪Z=Z,B∪Z=Z,A∪B=Z
歸納小結(jié)(略)作業(yè)布置書面作業(yè):P13習(xí)題1.1,第6-12題提高內(nèi)容:已知X={x|x2+px+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且,試求p、q;集合A={x|x2+px-2=0},B={x|x2-x+q=0},若AB={-2,0,1},求p、q;A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB={3,7},求B課題:§1.2教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.教學(xué)目的:(1)通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;(2)了解構(gòu)成函數(shù)的要素;(3)會(huì)求一些簡單函數(shù)的定義域和值域;(4)能夠正確使用“區(qū)間”的符號(hào)表示某些函數(shù)的定義域;教學(xué)重點(diǎn):理解函數(shù)的模型化思想,用合與對(duì)應(yīng)的語言來刻畫函數(shù);教學(xué)難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;教學(xué)過程:引入課題復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:(1)炮彈的射高與時(shí)間的變化關(guān)系問題;(2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問題;(3)“八五”計(jì)劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問題備用實(shí)例:我國2003年4月份非典疫情統(tǒng)計(jì):日期222324252627282930新增確診病例數(shù)1061058910311312698152101引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.新課教學(xué)(一)函數(shù)的有關(guān)概念1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).注意:eq\o\ac(○,1)“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;eq\o\ac(○,2)函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域3.區(qū)間的概念 (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間; (2)無窮區(qū)間; (3)區(qū)間的數(shù)軸表示.4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論 (由學(xué)生完成,師生共同分析講評(píng))(二)典型例題1.求函數(shù)定義域 課本P20例1 解:(略) 說明:eq\o\ac(○,1)函數(shù)的定義域通常由問題的實(shí)際背景確定,如果課前三個(gè)實(shí)例;eq\o\ac(○,2)如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;eq\o\ac(○,3)函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.鞏固練習(xí):課本P22第1題2.判斷兩個(gè)函數(shù)是否為同一函數(shù)課本P21例2解:(略) 說明:eq\o\ac(○,1)構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))eq\o\ac(○,2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。鞏固練習(xí):eq\o\ac(○,1)課本P22第2題eq\o\ac(○,2)判斷下列函數(shù)f(x)與g(x)是否表示同一個(gè)函數(shù),說明理由?(1)f(x)=(x-1)0;g(x)=1(2)f(x)=x;g(x)=(3)f(x)=x2;f(x)=(x+1)2(4)f(x)=|x|;g(x)=(三)課堂練習(xí)求下列函數(shù)的定義域(1)(2)(3)(4)(5)(6)歸納小結(jié),強(qiáng)化思想從具體實(shí)例引入了函數(shù)的的概念,用集合與對(duì)應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。作業(yè)布置課本P28習(xí)題1.2(A組)第1—7題(B組)第1題課題:§1.2教學(xué)目的:(1)了解映射的概念及表示方法,了解象、原象的概念;(2)結(jié)合簡單的對(duì)應(yīng)圖示,了解一一映射的概念.教學(xué)重點(diǎn):映射的概念.教學(xué)難點(diǎn):映射的概念.教學(xué)過程:引入課題復(fù)習(xí)初中已經(jīng)遇到過的對(duì)應(yīng):對(duì)于任何一個(gè)實(shí)數(shù)a,數(shù)軸上都有唯一的點(diǎn)P和它對(duì)應(yīng);對(duì)于坐標(biāo)平面內(nèi)任何一個(gè)點(diǎn)A,都有唯一的有序?qū)崝?shù)對(duì)(x,y)和它對(duì)應(yīng);對(duì)于任意一個(gè)三角形,都有唯一確定的面積和它對(duì)應(yīng);某影院的某場電影的每一張電影票有唯一確定的座位與它對(duì)應(yīng);5.函數(shù)的概念.新課教學(xué)我們已經(jīng)知道,函數(shù)是建立在兩個(gè)非空數(shù)集間的一種對(duì)應(yīng),若將其中的條件“非空數(shù)集”弱化為“任意兩個(gè)非空集合”,按照某種法則可以建立起更為普通的元素之間的對(duì)應(yīng)關(guān)系,這種的對(duì)應(yīng)就叫映射(mapping)(板書課題).先看幾個(gè)例子,兩個(gè)集合A、B的元素之間的一些對(duì)應(yīng)關(guān)系(1)開平方;(2)求正弦(3)求平方;(4)乘以2;什么叫做映射?一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從集合A到集合B的一個(gè)映射(mapping).記作“f:AB”說明:(1)這兩個(gè)集合有先后順序,A到B的射與B到A的映射是截然不同的.其中f表示具體的對(duì)應(yīng)法則,可以用漢字?jǐn)⑹觯?)“都有唯一”什么意思?包含兩層意思:一是必有一個(gè);二是只有一個(gè),也就是說有且只有一個(gè)的意思。例題分析:下列哪些對(duì)應(yīng)是從集合A到集合B的映射?(1)A={P|P是數(shù)軸上的點(diǎn)},B=R,對(duì)應(yīng)關(guān)系f:數(shù)軸上的點(diǎn)與它所代表的實(shí)數(shù)對(duì)應(yīng);(2)A={P|P是平面直角體系中的點(diǎn)},B={(x,y)|x∈R,y∈R},對(duì)應(yīng)關(guān)系f:平面直角體系中的點(diǎn)與它的坐標(biāo)對(duì)應(yīng);(3)A={三角形},B={x|x是圓},對(duì)應(yīng)關(guān)系f:每一個(gè)三角形都對(duì)應(yīng)它的內(nèi)切圓;(4)A={x|x是新華中學(xué)的班級(jí)},B={x|x是新華中學(xué)的學(xué)生},對(duì)應(yīng)關(guān)系f:每一個(gè)班級(jí)都對(duì)應(yīng)班里的學(xué)生.思考:將(3)中的對(duì)應(yīng)關(guān)系f改為:每一個(gè)圓都對(duì)應(yīng)它的內(nèi)接三角形;(4)中的對(duì)應(yīng)關(guān)系f改為:每一個(gè)學(xué)生都對(duì)應(yīng)他的班級(jí),那么對(duì)應(yīng)f:BA是從集合B到集合A的映射嗎?完成課本練習(xí)作業(yè)布置補(bǔ)充習(xí)題課題:§1.2教學(xué)目的:(1)明確函數(shù)的三種表示方法;(2)在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù);(3)通過具體實(shí)例,了解簡單的分段函數(shù),并能簡單應(yīng)用;(4)糾正認(rèn)為“y=f(x)”就是函數(shù)的解析式的片面錯(cuò)誤認(rèn)識(shí).教學(xué)重點(diǎn):函數(shù)的三種表示方法,分段函數(shù)的概念.教學(xué)難點(diǎn):根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù),什么才算“恰當(dāng)”?分段函數(shù)的表示及其圖象.教學(xué)過程:引入課題復(fù)習(xí):函數(shù)的概念;常用的函數(shù)表示法及各自的優(yōu)點(diǎn):(1)解析法;(2)圖象法;(3)列表法.新課教學(xué)(一)典型例題例1.某種筆記本的單價(jià)是5元,買x(x∈{1,2,3,4,5})個(gè)筆記本需要y元.試用三種表示法表示函數(shù)y=f(x).分析:注意本例的設(shè)問,此處“y=f(x)”有三種含義,它可以是解析表達(dá)式,可以是圖象,也可以是對(duì)應(yīng)值表.解:(略)注意:eq\o\ac(○,1)函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點(diǎn)等等,注意判斷一個(gè)圖形是否是函數(shù)圖象的依據(jù);eq\o\ac(○,2)解析法:必須注明函數(shù)的定義域;eq\o\ac(○,3)圖象法:是否連線;eq\o\ac(○,4)列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征.鞏固練習(xí):課本P27練習(xí)第1題例2.下表是某校高一(1)班三位同學(xué)在高一學(xué)年度幾次數(shù)學(xué)測試的成績及班級(jí)及班級(jí)平均分表:第一次第二次第三次第四次第五次第六次王偉988791928895張城907688758680趙磊686573727582班平均分88.278.385.480.375.782.6請(qǐng)你對(duì)這三們同學(xué)在高一學(xué)年度的數(shù)學(xué)學(xué)習(xí)情況做一個(gè)分析.分析:本例應(yīng)引導(dǎo)學(xué)生分析題目要求,做學(xué)情分析,具體要分析什么?怎么分析?借助什么工具?解:(略)注意:eq\o\ac(○,1)本例為了研究學(xué)生的學(xué)習(xí)情況,將離散的點(diǎn)用虛線連接,這樣更便于研究成績的變化特點(diǎn);eq\o\ac(○,2)本例能否用解析法?為什么?鞏固練習(xí):課本P27練習(xí)第2題例3.畫出函數(shù)y=|x|.解:(略)鞏固練習(xí):課本P27練習(xí)第3題拓展練習(xí):任意畫一個(gè)函數(shù)y=f(x)的圖象,然后作出y=|f(x)|和y=f(|x|)的圖象,并嘗試簡要說明三者(圖象)之間的關(guān)系.課本P27練習(xí)第3題例4.某市郊空調(diào)公共汽車的票價(jià)按下列規(guī)則制定:(1)乘坐汽車5公里以內(nèi),票價(jià)2元;(2)5公里以上,每增加5公里,票價(jià)增加1元(不足5公里按5公里計(jì)算).已知兩個(gè)相鄰的公共汽車站間相距約為1公里,如果沿途(包括起點(diǎn)站和終點(diǎn)站)設(shè)20個(gè)汽車站,請(qǐng)根據(jù)題意,寫出票價(jià)與里程之間的函數(shù)解析式,并畫出函數(shù)的圖象.分析:本例是一個(gè)實(shí)際問題,有具體的實(shí)際意義.根據(jù)實(shí)際情況公共汽車到站才能停車,所以行車?yán)锍讨荒苋≌麛?shù)值.解:設(shè)票價(jià)為y元,里程為x公里,同根據(jù)題意,如果某空調(diào)汽車運(yùn)行路線中設(shè)20個(gè)汽車站(包括起點(diǎn)站和終點(diǎn)站),那么汽車行駛的里程約為19公里,所以自變量x的取值范圍是{x∈N*|x≤19}由空調(diào)汽車票價(jià)制定的規(guī)定,可得到以下函數(shù)解析式:()根據(jù)這個(gè)函數(shù)解析式,可畫出函數(shù)圖象,如下圖所示:注意:eq\o\ac(○,1)本例具有實(shí)際背景,所以解題時(shí)應(yīng)考慮其實(shí)際意義;eq\o\ac(○,2)本題可否用列表法表示函數(shù),如果可以,應(yīng)怎樣列表?實(shí)踐與拓展:請(qǐng)你設(shè)計(jì)一張乘車價(jià)目表,讓售票員和乘客非常容易地知道任意兩站之間的票價(jià).(可以實(shí)地考查一下某公交車線路)說明:象上面兩例中的函數(shù),稱為分段函數(shù).注意:分段函數(shù)的解析式不能寫成幾個(gè)不同的方程,而就寫函數(shù)值幾種不同的表達(dá)式并用一個(gè)左大括號(hào)括起來,并分別注明各部分的自變量的取值情況.歸納小結(jié),強(qiáng)化思想理解函數(shù)的三種表示方法,在具體的實(shí)際問題中能夠選用恰當(dāng)?shù)谋硎痉▉肀硎竞瘮?shù),注意分段函數(shù)的表示方法及其圖象的畫法.作業(yè)布置課本P28習(xí)題1.2(A組)第8—12題(B組)第2、3題課題:§1.教學(xué)目的:(1)通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性及其幾何意義;(2)學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);(3)能夠熟練應(yīng)用定義判斷數(shù)在某區(qū)間上的的單調(diào)性.教學(xué)重點(diǎn):函數(shù)的單調(diào)性及其幾何意義.教學(xué)難點(diǎn):利用函數(shù)的單調(diào)性定義判斷、證明函數(shù)的單調(diào)性.教學(xué)過程:引入課題觀察下列各個(gè)函數(shù)的圖象,并說說它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:yyx1-11-1yx1-11-1yx1-11-1eq\o\ac(○,1)隨x的增大,y的值有什么變化?eq\o\ac(○,2)能否看出函數(shù)的最大、最小值?yx1-11-1eq\o\ac(○,3yx1-11-1畫出下列函數(shù)的圖象,觀察其變化規(guī)律:1.f(x)=x eq\o\ac(○,1)從左至右圖象上升還是下降______? eq\o\ac(○,2)在區(qū)間____________上,隨著x的增大,f(x)的值隨著________.yyx1-11-12.f(x)=-2x+1 eq\o\ac(○,1)從左至右圖象上升還是下降______? eq\o\ac(○,2)在區(qū)間____________上,隨著x的增大,f(x)的值隨著________.yx1yx1-11-1 eq\o\ac(○,1)在區(qū)間____________上,f(x)的值隨著x的增大而________. eq\o\ac(○,2)在區(qū)間____________上,f(x)的值隨著x的增大而________.新課教學(xué)(一)函數(shù)單調(diào)性定義1.增函數(shù) 一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)镮, 如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說f(x)在區(qū)間D上是增函數(shù)(increasingfunction).思考:仿照增函數(shù)的定義說出減函數(shù)的定義.(學(xué)生活動(dòng))注意:eq\o\ac(○,1)函數(shù)的單調(diào)性是在定義域內(nèi)的某個(gè)區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì);eq\o\ac(○,2)必須是對(duì)于區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2;當(dāng)x1<x2時(shí),總有f(x1)<f(x2).2.函數(shù)的單調(diào)性定義如果函數(shù)y=f(x)在某個(gè)區(qū)間上是增函數(shù)或是減函數(shù),那么就說函數(shù)y=f(x)在這一區(qū)間具有(嚴(yán)格的)單調(diào)性,區(qū)間D叫做y=f(x)的單調(diào)區(qū)間: 3.判斷函數(shù)單調(diào)性的方法步驟 利用定義證明函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性的一般步驟: eq\o\ac(○,1)任取x1,x2∈D,且x1<x2; eq\o\ac(○,2)作差f(x1)-f(x2);eq\o\ac(○,3)變形(通常是因式分解和配方);eq\o\ac(○,4)定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));eq\o\ac(○,5)下結(jié)論(即指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).(二)典型例題例1.(教材P34例1)根據(jù)函數(shù)圖象說明函數(shù)的單調(diào)性.解:(略)鞏固練習(xí):課本P38練習(xí)第1、2題例2.(教材P34例2)根據(jù)函數(shù)單調(diào)性定義證明函數(shù)的單調(diào)性.解:(略)鞏固練習(xí):eq\o\ac(○,1)課本P38練習(xí)第3題; eq\o\ac(○,2)證明函數(shù)在(1,+∞)上為增函數(shù).例3.借助計(jì)算機(jī)作出函數(shù)y=-x2+2|x|+3的圖象并指出它的的單調(diào)區(qū)間.解:(略)思考:畫出反比例函數(shù)的圖象. eq\o\ac(○,1)這個(gè)函數(shù)的定義域是什么? eq\o\ac(○,2)它在定義域I上的單調(diào)性怎樣?證明你的結(jié)論.說明:本例可利用幾何畫板、函數(shù)圖象生成軟件等作出函數(shù)圖象.歸納小結(jié),強(qiáng)化思想函數(shù)的單調(diào)性一般是先根據(jù)圖象判斷,再利用定義證明.畫函數(shù)圖象通常借助計(jì)算機(jī),求函數(shù)的單調(diào)區(qū)間時(shí)必須要注意函數(shù)的定義域,單調(diào)性的證明一般分五步:取值→作差→變形→定號(hào)→下結(jié)論作業(yè)布置書面作業(yè):課本P45習(xí)題1.3(A組)第1-5題.提高作業(yè):設(shè)f(x)是定義在R上的增函數(shù),f(xy)=f(x)+f(y),eq\o\ac(○,1)求f(0)、f(1)的值;eq\o\ac(○,2)若f(3)=1,求不等式f(x)+f(x-2)>1的解集.課題:§1.教學(xué)目的:(1)理解函數(shù)的奇偶性及其幾何意義;(2)學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);(3)學(xué)會(huì)判斷函數(shù)的奇偶性.教學(xué)重點(diǎn):函數(shù)的奇偶性及其幾何意義.教學(xué)難點(diǎn):判斷函數(shù)的奇偶性的方法與格式.教學(xué)過程:引入課題1.實(shí)踐操作:(也可借助計(jì)算機(jī)演示)取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:eq\o\ac(○,1)以y軸為折痕將紙對(duì)折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形;問題:將第一象限和第二象限的圖形看成一個(gè)整體,則這個(gè)圖形可否作為某個(gè)函數(shù)y=f(x)的圖象,若能請(qǐng)說出該圖象具有什么特殊的性質(zhì)?函數(shù)圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特殊的關(guān)系?答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱;(2)若點(diǎn)(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(diǎn)(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn),它們的縱坐標(biāo)一定相等.eq\o\ac(○,2)以y軸為折痕將紙對(duì)折,然后以x軸為折痕將紙對(duì)折,在紙的背面(即第三象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形:問題:將第一象限和第三象限的圖形看成一個(gè)整體,則這個(gè)圖形可否作為某個(gè)函數(shù)y=f(x)的圖象,若能請(qǐng)說出該圖象具有什么特殊的性質(zhì)?函數(shù)圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特殊的關(guān)系?答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于原點(diǎn)對(duì)稱;(2)若點(diǎn)(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(diǎn)(-x,-f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn),它們的縱坐標(biāo)也一定互為相反數(shù). 2.觀察思考(教材P39、P40觀察思考)新課教學(xué)(一)函數(shù)的奇偶性定義象上面實(shí)踐操作eq\o\ac(○,1)中的圖象關(guān)于y軸對(duì)稱的函數(shù)即是偶函數(shù),操作eq\o\ac(○,2)中的圖象關(guān)于原點(diǎn)對(duì)稱的函數(shù)即是奇函數(shù).1.偶函數(shù)(evenfunction)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義2.奇函數(shù)(oddfunction)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).注意:eq\o\ac(○,1)函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);eq\o\ac(○,2)由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).(二)具有奇偶性的函數(shù)的圖象的特征偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.(三)典型例題1.判斷函數(shù)的奇偶性例1.(教材P36例3)應(yīng)用函數(shù)奇偶性定義說明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性.(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)解:(略)總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:eq\o\ac(○,1)首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;eq\o\ac(○,2)確定f(-x)與f(x)的關(guān)系;eq\o\ac(○,3)作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).鞏固練習(xí):(教材P41例5)例2.(教材P46習(xí)題1.3B組每1題)解:(略)說明:函數(shù)具有奇偶性的一個(gè)必要條件是,定義域關(guān)于原點(diǎn)對(duì)稱,所以判斷函數(shù)的奇偶性應(yīng)應(yīng)首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不是即可斷定函數(shù)是非奇非偶函數(shù).2.利用函數(shù)的奇偶性補(bǔ)全函數(shù)的圖象(教材P41思考題)規(guī)律:偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱. 說明:這也可以作為判斷函數(shù)奇偶性的依據(jù).鞏固練習(xí):(教材P42練習(xí)1)3.函數(shù)的奇偶性與單調(diào)性的關(guān)系(學(xué)生活動(dòng))舉幾個(gè)簡單的奇函數(shù)和偶函數(shù)的例子,并畫出其圖象,根據(jù)圖象判斷奇函數(shù)和偶函數(shù)的單調(diào)性具有什么特殊的特征.例3.已知f(x)是奇函數(shù),在(0,+∞)上是增函數(shù),證明:f(x)在(-∞,0)上也是增函數(shù)解:(由一名學(xué)生板演,然后師生共同評(píng)析,規(guī)范格式與步驟)規(guī)律:偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相反;奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性一致.歸納小結(jié),強(qiáng)化思想本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱.單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì).作業(yè)布置書面作業(yè):課本P46習(xí)題1.3(A組)第9、10題,B組第2題.2.補(bǔ)充作業(yè):判斷下列函數(shù)的奇偶性:eq\o\ac(○,1);eq\o\ac(○,2);eq\o\ac(○,3)()eq\o\ac(○,4)課后思考:已知是定義在R上的函數(shù),設(shè),eq\o\ac(○,1)試判斷的奇偶性;eq\o\ac(○,2)試判斷的關(guān)系;eq\o\ac(○,3)由此你能猜想得出什么樣的結(jié)論,并說明理由.課題:§1.教學(xué)目的:(1)理解函數(shù)的最大(小)值及其幾何意義;(2)學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);教學(xué)重點(diǎn):函數(shù)的最大(?。┲导捌鋷缀我饬x.教學(xué)難點(diǎn):利用函數(shù)的單調(diào)性求函數(shù)的最大(小)值.教學(xué)過程:引入課題畫出下列函數(shù)的圖象,并根據(jù)圖象解答下列問題:eq\o\ac(○,1)說出y=f(x)的單調(diào)區(qū)間,以及在各單調(diào)區(qū)間上的單調(diào)性;eq\o\ac(○,2)指出圖象的最高點(diǎn)或最低點(diǎn),并說明它能體現(xiàn)函數(shù)的什么特征?(1) (2) (3) (4) 新課教學(xué)(一)函數(shù)最大(?。┲刀x1.最大值 一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果存在實(shí)數(shù)M滿足: (1)對(duì)于任意的x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M 那么,稱M是函數(shù)y=f(x)的最大值(MaximumValue).思考:仿照函數(shù)最大值的定義,給出函數(shù)y=f(x)的最小值(MinimumValue)的定義.(學(xué)生活動(dòng))注意:eq\o\ac(○,1)函數(shù)最大(?。┦紫葢?yīng)該是某一個(gè)函數(shù)值,即存在x0∈I,使得f(x0)=M;eq\o\ac(○,2)函數(shù)最大(小)應(yīng)該是所有函數(shù)值中最大(?。┑模磳?duì)于任意的x∈I,都有f(x)≤M(f(x)≥M). 2.利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值的方法 eq\o\ac(○,1)利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(?。┲?eq\o\ac(○,2)利用圖象求函數(shù)的最大(?。┲?eq\o\ac(○,3)利用函數(shù)單調(diào)性的判斷函數(shù)的最大(?。┲?如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);(二)典型例題例1.(教材P36例3)利用二次函數(shù)的性質(zhì)確定函數(shù)的最大(?。┲担猓海裕┱f明:對(duì)于具有實(shí)際背景的問題,首先要仔細(xì)審清題意,適當(dāng)設(shè)出變量,建立適當(dāng)?shù)暮瘮?shù)模型,然后利用二次函數(shù)的性質(zhì)或利用圖象確定函數(shù)的最大(?。┲担?5鞏固練習(xí):如圖,把截面半徑為2525cm的圓形木頭鋸成矩形木料,如果矩形一邊長為x,面積為y試將y表示成x的函數(shù),并畫出函數(shù)的大致圖象,并判斷怎樣鋸才能使得截面面積最大?例2.(新題講解)旅館定價(jià) 一個(gè)星級(jí)旅館有150個(gè)標(biāo)準(zhǔn)房,經(jīng)過一段時(shí)間的經(jīng)營,經(jīng)理得到一些定價(jià)和住房率的數(shù)據(jù)如下:房價(jià)(元)住房率(%)16055140651207510085欲使每天的的營業(yè)額最高,應(yīng)如何定價(jià)?解:根據(jù)已知數(shù)據(jù),可假設(shè)該客房的最高價(jià)為160元,并假設(shè)在各價(jià)位之間,房價(jià)與住房率之間存在線性關(guān)系.設(shè)為旅館一天的客房總收入,為與房價(jià)160相比降低的房價(jià),因此當(dāng)房價(jià)為元時(shí),住房率為,于是得=150··.由于≤1,可知0≤≤90.因此問題轉(zhuǎn)化為:當(dāng)0≤≤90時(shí),求的最大值的問題.將的兩邊同除以一個(gè)常數(shù)0.75,得1=-2+50+17600.由于二次函數(shù)1在=25時(shí)取得最大值,可知也在=25時(shí)取得最大值,此時(shí)房價(jià)定位應(yīng)是160-25=135(元),相應(yīng)的住房率為67.5%,最大住房總收入為13668.75(元).所以該客房定價(jià)應(yīng)為135元.(當(dāng)然為了便于管理,定價(jià)140元也是比較合理的)例3.(教材P37例4)求函數(shù)在區(qū)間[2,6]上的最大值和最小值.解:(略)注意:利用函數(shù)的單調(diào)性求函數(shù)的最大(?。┲档姆椒ㄅc格式.鞏固練習(xí):(教材P38練習(xí)4) 歸納小結(jié),強(qiáng)化思想函數(shù)的單調(diào)性一般是先根據(jù)圖象判斷,再利用定義證明.畫函數(shù)圖象通常借助計(jì)算機(jī),求函數(shù)的單調(diào)區(qū)間時(shí)必須要注意函數(shù)的定義域,單調(diào)性的證明一般分五步:取值→作差→變形→定號(hào)→下結(jié)論作業(yè)布置書面作業(yè):課本P45習(xí)題1.3(A組)第6、7、8題.ABCD提高作業(yè):快艇和輪船分別從A地和C地同時(shí)開出,如下圖,各沿箭頭方向航行,快艇和輪船的速度分別是45km/h和15km/hABCD課題:§2.1.1指數(shù)教學(xué)目的:(1)掌握根式的概念;(2)規(guī)定分?jǐn)?shù)指數(shù)冪的意義;(3)學(xué)會(huì)根式與分?jǐn)?shù)指數(shù)冪之間的相互轉(zhuǎn)化;(4)理解有理指數(shù)冪的含義及其運(yùn)算性質(zhì);(5)了解無理數(shù)指數(shù)冪的意義教學(xué)重點(diǎn):分?jǐn)?shù)指數(shù)冪的意義,根式與分?jǐn)?shù)指數(shù)冪之間的相互轉(zhuǎn)化,有理指數(shù)冪的運(yùn)算性質(zhì)教學(xué)難點(diǎn):根式的概念,根式與分?jǐn)?shù)指數(shù)冪之間的相互轉(zhuǎn)化,了解無理數(shù)指數(shù)冪.教學(xué)過程:引入課題以折紙問題引入,激發(fā)學(xué)生的求知欲望和學(xué)習(xí)指數(shù)概念的積極性由實(shí)例引入,了解指數(shù)指數(shù)概念提出的背景,體會(huì)引入指數(shù)的必要性;復(fù)習(xí)初中整數(shù)指數(shù)冪的運(yùn)算性質(zhì);初中根式的概念;如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)叫做a的平方根,如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)叫做a的立方根;新課教學(xué)(一)指數(shù)與指數(shù)冪的運(yùn)算1.根式的概念 一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*. 當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示. 式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作.思考:(課本P58探究問題)=一定成立嗎?.(學(xué)生活動(dòng))結(jié)論:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),例1.(教材P58例1).解:(略)鞏固練習(xí):(教材P58例1) 2.分?jǐn)?shù)指數(shù)冪 正數(shù)的分?jǐn)?shù)指數(shù)冪的意義 規(guī)定:0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.3.有理指數(shù)冪的運(yùn)算性質(zhì)(1)· ;(2) ;(3) .引導(dǎo)學(xué)生解決本課開頭實(shí)例問題例2.(教材P60例2、例3、例4、例5)說明:讓學(xué)生熟練掌握根式與分?jǐn)?shù)指數(shù)冪的互化和有理指數(shù)冪的運(yùn)算性質(zhì)運(yùn)用.鞏固練習(xí):(教材P63練習(xí)1-3)無理指數(shù)冪結(jié)合教材P62實(shí)例利用逼近的思想理解無理指數(shù)冪的意義. 指出:一般地,無理數(shù)指數(shù)冪是一個(gè)確定的實(shí)數(shù).有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)同樣適用于無理數(shù)指數(shù)冪. 思考:(教材P63練習(xí)4)鞏固練習(xí)思考::(教材P62思考題)例3.(新題講解)從盛滿1升純酒精的容器中倒出升,然后用水填滿,再倒出升,又用水填滿,這樣進(jìn)行5次,則容器中剩下的純酒精的升數(shù)為多少?解:(略)點(diǎn)評(píng):本題還可以進(jìn)一步推廣,說明可以用指數(shù)的運(yùn)算來解決生活中的實(shí)際問題.歸納小結(jié),強(qiáng)化思想本節(jié)主要學(xué)習(xí)了根式與分?jǐn)?shù)指數(shù)冪以及指數(shù)冪的運(yùn)算,分?jǐn)?shù)指數(shù)冪是根式的另一種表示形式,根式與分?jǐn)?shù)指數(shù)冪可以進(jìn)行互化.在進(jìn)行指數(shù)冪的運(yùn)算時(shí),一般地,化指數(shù)為正指數(shù),化根式為分?jǐn)?shù)指數(shù)冪,化小數(shù)為分?jǐn)?shù)進(jìn)行運(yùn)算,便于進(jìn)行乘除、乘方、開方運(yùn)算,以達(dá)到化繁為簡的目的,對(duì)含有指數(shù)式或根式的乘除運(yùn)算,還要善于利用冪的運(yùn)算法則.作業(yè)布置必做題:教材P69習(xí)題2.1(A組)第1-4題.選做題:教材P70習(xí)題2.1(B組)第2題.課題:§2.1.2指數(shù)函數(shù)及其性質(zhì)教學(xué)任務(wù):(1)使學(xué)生了解指數(shù)函數(shù)模型的實(shí)際背景,認(rèn)識(shí)數(shù)學(xué)與現(xiàn)實(shí)生活及其他學(xué)科的聯(lián)系;(2)理解指數(shù)函數(shù)的的概念和意義,能畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性和特殊點(diǎn);(3)在學(xué)習(xí)的過程中體會(huì)研究具體函數(shù)及其性質(zhì)的過程和方法,如具體到一般的過程、數(shù)形結(jié)合的方法等.教學(xué)重點(diǎn):指數(shù)函數(shù)的的概念和性質(zhì).教學(xué)難點(diǎn):用數(shù)形結(jié)合的方法從具體到一般地探索、概括指數(shù)函數(shù)的性質(zhì).教學(xué)過程:引入課題(備選引例)(合作討論)人口問題是全球性問題,由于全球人口迅猛增加,已引起全世界關(guān)注.世界人口2000年大約是60億,而且以每年1.3%的增長率增長,按照這種增長速度,到2050年世界人口將達(dá)到100多億,大有“人口爆炸”的趨勢.為此,全球范圍內(nèi)敲起了人口警鐘,并把每年的7月11日定為“世界人口日”,呼吁各國要控制人口增長.為了控制人口過快增長,許多國家都實(shí)行了計(jì)劃生育.我國人口問題更為突出,在耕地面積只占世界7%的國土上,卻養(yǎng)育著22%的世界人口.因此,中國的人口問題是公認(rèn)的社會(huì)問題.2000年第五次人口普查,中國人口已達(dá)到13億,年增長率約為1%.為了有效地控制人口過快增長,實(shí)行計(jì)劃生育成為我國一項(xiàng)基本國策.eq\o\ac(○,1)按照上述材料中的1%的增長率,從2000年起,x年后我國的人口將達(dá)到2000年的多少倍?eq\o\ac(○,2)到2050年我國的人口將達(dá)到多少?eq\o\ac(○,3)你認(rèn)為人口的過快增長會(huì)給社會(huì)的發(fā)展帶來什么樣的影響?上一節(jié)中GDP問題中時(shí)間x與GDP值y的對(duì)應(yīng)關(guān)系y=1.073x(x∈N*,x≤20)能否構(gòu)成函數(shù)?一種放射性物質(zhì)不斷變化成其他物質(zhì),每經(jīng)過一年的殘留量是原來的84%,那么以時(shí)間x年為自變量,殘留量y的函數(shù)關(guān)系式是什么?上面的幾個(gè)函數(shù)有什么共同特征?新課教學(xué)(一)指數(shù)函數(shù)的概念 一般地,函數(shù)叫做指數(shù)函數(shù)(exponentialfunction),其中x是自變量,函數(shù)的定義域?yàn)镽. 注意:eq\o\ac(○,1)指數(shù)函數(shù)的定義是一個(gè)形式定義,要引導(dǎo)學(xué)生辨析;eq\o\ac(○,2)注意指數(shù)函數(shù)的底數(shù)的取值范圍,引導(dǎo)學(xué)生分析底數(shù)為什么不能是負(fù)數(shù)、零和1.鞏固練習(xí):利用指數(shù)函數(shù)的定義解決(教材P68例2、3)(二)指數(shù)函數(shù)的圖象和性質(zhì)問題:你能類比前面討論函數(shù)性質(zhì)時(shí)的思路,提出研究指數(shù)函數(shù)性質(zhì)的內(nèi)容和方法嗎?研究方法:畫出函數(shù)的圖象,結(jié)合圖象研究函數(shù)的性質(zhì).研究內(nèi)容:定義域、值域、特殊點(diǎn)、單調(diào)性、最大(小)值、奇偶性.探索研究:1.在同一坐標(biāo)系中畫出下列函數(shù)的圖象:(1)(2)(3)(4)(5)2.從畫出的圖象中你能發(fā)現(xiàn)函數(shù)的圖象和函數(shù)的圖象有什么關(guān)系?可否利用的圖象畫出的圖象?3.從畫出的圖象(、和)中,你能發(fā)現(xiàn)函數(shù)的圖象與其底數(shù)之間有什么樣的規(guī)律?4.你能根據(jù)指數(shù)函數(shù)的圖象的特征歸納出指數(shù)函數(shù)的性質(zhì)嗎?圖象特征函數(shù)性質(zhì)向x、y軸正負(fù)方向無限延伸函數(shù)的定義域?yàn)镽圖象關(guān)于原點(diǎn)和y軸不對(duì)稱非奇非偶函數(shù)函數(shù)圖象都在x軸上方函數(shù)的值域?yàn)镽+函數(shù)圖象都過定點(diǎn)(0,1)自左向右看,圖象逐漸上升自左向右看,圖象逐漸下降增函數(shù)減函數(shù)在第一象限內(nèi)的圖象縱坐標(biāo)都大于1在第一象限內(nèi)的圖象縱坐標(biāo)都小于1在第二象限內(nèi)的圖象縱坐標(biāo)都小于1在第二象限內(nèi)的圖象縱坐標(biāo)都大于1圖象上升趨勢是越來越陡圖象上升趨勢是越來越緩函數(shù)值開始增長較慢,到了某一值后增長速度極快;函數(shù)值開始減小極快,到了某一值后減小速度較慢;利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:
(1)在[a,b]上,值域是或;
(2)若,則;取遍所有正數(shù)當(dāng)且僅當(dāng);
(3)對(duì)于指數(shù)函數(shù),總有;
(4)當(dāng)時(shí),若,則;(三)典型例題例1.(教材P66例6).解:(略)問題:你能根據(jù)本例說出確定一個(gè)指數(shù)函數(shù)需要幾個(gè)條件嗎?例2.(教材P66例7)解:(略)問題:你能根據(jù)本例說明怎樣利用指數(shù)函數(shù)的性質(zhì)判斷兩個(gè)冪的大小?說明:規(guī)范利用指數(shù)函數(shù)的性質(zhì)判斷兩個(gè)冪的大小方法、步驟與格式.鞏固練習(xí):(教材P69習(xí)題A組第7題)歸納小結(jié),強(qiáng)化思想本節(jié)主要學(xué)習(xí)了指數(shù)函數(shù)的圖象,及利用圖象研究函數(shù)性質(zhì)的方法.作業(yè)布置必做題:教材P69習(xí)題2.1(A組)第5、6、8、12題.選做題:教材P70習(xí)題2.1(B組)第1題.課題:§2.2.1對(duì)數(shù)教學(xué)目的:(1)理解對(duì)數(shù)的概念;(2)能夠說明對(duì)數(shù)與指數(shù)的關(guān)系;(3)掌握對(duì)數(shù)式與指數(shù)式的相互轉(zhuǎn)化.教學(xué)重點(diǎn):對(duì)數(shù)的概念,對(duì)數(shù)式與指數(shù)式的相互轉(zhuǎn)化教學(xué)難點(diǎn):對(duì)數(shù)概念的理解.教學(xué)過程:引入課題(對(duì)數(shù)的起源)價(jià)紹對(duì)數(shù)產(chǎn)生的歷史背景與概念的形成過程,體會(huì)引入對(duì)數(shù)的必要性;設(shè)計(jì)意圖:激發(fā)學(xué)生學(xué)習(xí)對(duì)數(shù)的興趣,培養(yǎng)對(duì)數(shù)學(xué)習(xí)的科學(xué)研究精神.嘗試解決本小節(jié)開始提出的問題.新課教學(xué)1.對(duì)數(shù)的概念 一般地,如果,那么數(shù)叫做以為底的對(duì)數(shù)(Logarithm),記作: —底數(shù),—真數(shù),—對(duì)數(shù)式 說明:eq\o\ac(○,1)注意底數(shù)的限制,且;eq\o\ac(○,2);eq\o\ac(○,3)注意對(duì)數(shù)的書寫格式.思考:eq\o\ac(○,1)為什么對(duì)數(shù)的定義中要求底數(shù),且;eq\o\ac(○,2)是否是所有的實(shí)數(shù)都有對(duì)數(shù)呢?設(shè)計(jì)意圖:正確理解對(duì)數(shù)定義中底數(shù)的限制,為以后對(duì)數(shù)型函數(shù)定義域的確定作準(zhǔn)備.兩個(gè)重要對(duì)數(shù):eq\o\ac(○,1)常用對(duì)數(shù)(commonlogarithm):以10為底的對(duì)數(shù);eq\o\ac(○,2)自然對(duì)數(shù)(naturallogarithm):以無理數(shù)為底的對(duì)數(shù)的對(duì)數(shù).對(duì)數(shù)式與指數(shù)式的互化 對(duì)數(shù)式 指數(shù)式對(duì)數(shù)底數(shù) ← →冪底數(shù)對(duì)數(shù) ← →指數(shù)真數(shù) ← →冪例1.(教材P73例1)鞏固練習(xí):(教材P74練習(xí)1、2)設(shè)計(jì)意圖:熟練對(duì)數(shù)式與指數(shù)式的相互轉(zhuǎn)化,加深理解對(duì)數(shù)概念.說明:本例題和練習(xí)均讓學(xué)生獨(dú)立閱讀思考完成,并指出對(duì)數(shù)式與指數(shù)式的互化中應(yīng)注意哪些問題.對(duì)數(shù)的性質(zhì)(學(xué)生活動(dòng))eq\o\ac(○,1)閱讀教材P73例2,指出其中求的依據(jù);eq\o\ac(○,2)獨(dú)立思考完成教材P74練習(xí)3、4,指出其中蘊(yùn)含的結(jié)論對(duì)數(shù)的性質(zhì)(1)負(fù)數(shù)和零沒有對(duì)數(shù);(2)1的對(duì)數(shù)是零:;(3)底數(shù)的對(duì)數(shù)是1:;(4)對(duì)數(shù)恒等式:;(5).歸納小結(jié),強(qiáng)化思想eq\o\ac(○,1)引入對(duì)數(shù)的必要性;eq\o\ac(○,2)指數(shù)與對(duì)數(shù)的關(guān)系;eq\o\ac(○,3)對(duì)數(shù)的基本性質(zhì).作業(yè)布置教材P86習(xí)題2.2(A組)第1、2題,(B組)第1題.課題:§2.2.2對(duì)數(shù)函數(shù)(一)教學(xué)任務(wù):(1)通過具體實(shí)例,直觀了解對(duì)數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對(duì)數(shù)函數(shù)的概念,體會(huì)對(duì)數(shù)函數(shù)是一類重要的函數(shù)模型;(2)能借助計(jì)算器或計(jì)算機(jī)畫出具體對(duì)數(shù)函數(shù)的圖象,探索并了解對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn);(3)通過比較、對(duì)照的方法,引導(dǎo)學(xué)生結(jié)合圖象類比指數(shù)函數(shù),探索研究對(duì)數(shù)函數(shù)的性質(zhì),培養(yǎng)學(xué)生數(shù)形結(jié)合的思想方法,學(xué)會(huì)研究函數(shù)性質(zhì)的方法.教學(xué)重點(diǎn):掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì).教學(xué)難點(diǎn):對(duì)數(shù)函數(shù)的定義,對(duì)數(shù)函數(shù)的圖象和性質(zhì)及應(yīng)用.教學(xué)過程:引入課題1.(知識(shí)方法準(zhǔn)備)eq\o\ac(○,1)學(xué)習(xí)指數(shù)函數(shù)時(shí),對(duì)其性質(zhì)研究了哪些內(nèi)容,采取怎樣的方法?設(shè)計(jì)意圖:結(jié)合指數(shù)函數(shù),讓學(xué)生熟知對(duì)于函數(shù)性質(zhì)的研究內(nèi)容,熟練研究函數(shù)性質(zhì)的方法——借助圖象研究性質(zhì). eq\o\ac(○,2)對(duì)數(shù)的定義及其對(duì)底數(shù)的限制.設(shè)計(jì)意圖:為講解對(duì)數(shù)函數(shù)時(shí)對(duì)底數(shù)的限制做準(zhǔn)備.2.(引例)教材P81引例處理建議:在教學(xué)時(shí),可以讓學(xué)生利用計(jì)算器填寫下表:碳14的含量P0.50.30.10.010.001生物死亡年數(shù)t 然后引導(dǎo)學(xué)生觀察上表,體會(huì)“對(duì)每一個(gè)碳14的含量P的取值,通過對(duì)應(yīng)關(guān)系,生物死亡年數(shù)t都有唯一的值與之對(duì)應(yīng),從而t是P的函數(shù)”.(進(jìn)而引入對(duì)數(shù)函數(shù)的概念)新課教學(xué)(一)對(duì)數(shù)函數(shù)的概念 1.定義:函數(shù),且叫做對(duì)數(shù)函數(shù)(logarithmicfunction)其中是自變量,函數(shù)的定義域是(0,+∞). 注意:eq\o\ac(○,1)對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別.如:,都不是對(duì)數(shù)函數(shù),而只能稱其為對(duì)數(shù)型函數(shù).eq\o\ac(○,2)對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制:,且.鞏固練習(xí):(教材P68例2、3)(二)對(duì)數(shù)函數(shù)的圖象和性質(zhì)問題:你能類比前面討論指數(shù)函數(shù)性質(zhì)的思路,提出研究對(duì)數(shù)函數(shù)性質(zhì)的內(nèi)容和方法嗎?研究方法:畫出函數(shù)的圖象,結(jié)合圖象研究函數(shù)的性質(zhì).研究內(nèi)容:定義域、值域、特殊點(diǎn)、單調(diào)性、最大(小)值、奇偶性.探索研究:eq\o\ac(○,1)在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象;(可用描點(diǎn)法,也可借助科學(xué)計(jì)算器或計(jì)算機(jī))(1)(2)(3)(4) eq\o\ac(○,2)類比指數(shù)函數(shù)圖象和性質(zhì)的研究,研究對(duì)數(shù)函數(shù)的性質(zhì)并填寫如下表格: 圖象特征函數(shù)性質(zhì)函數(shù)圖象都在y軸右側(cè)函數(shù)的定義域?yàn)椋?,+∞)圖象關(guān)于原點(diǎn)和y軸不對(duì)稱非奇非偶函數(shù)向y軸正負(fù)方向無限延伸函數(shù)的值域?yàn)镽函數(shù)圖象都過定點(diǎn)(1,1)自左向右看,圖象逐漸上升自左向右看,圖象逐漸下降增函數(shù)減函數(shù)第一象限的圖象縱坐標(biāo)都大于0第一象限的圖象縱坐標(biāo)都大于0第二象限的圖象縱坐標(biāo)都小于0第二象限的圖象縱坐標(biāo)都小于0 eq\o\ac(○,3)思考底數(shù)是如何影響函數(shù)的.(學(xué)生獨(dú)立思考,師生共同總結(jié)) 規(guī)律:在第一象限內(nèi),自左向右,圖象對(duì)應(yīng)的對(duì)數(shù)函數(shù)的底數(shù)逐漸變大.(三)典型例題例1.(教材P83例7).解:(略)說明:本例主要考察學(xué)生對(duì)對(duì)數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對(duì)對(duì)數(shù)函數(shù)的理解.鞏固練習(xí):(教材P85練習(xí)2).例2.(教材P83例8)解:(略)說明:本例主要考察學(xué)生利用對(duì)數(shù)函數(shù)的單調(diào)性“比較兩個(gè)數(shù)的大小”的方法,熟悉對(duì)數(shù)函數(shù)的性質(zhì),滲透應(yīng)用函數(shù)的觀點(diǎn)解決問題的思想方法.注意:本例應(yīng)著重強(qiáng)調(diào)利用對(duì)數(shù)函數(shù)的單調(diào)性比較兩個(gè)對(duì)數(shù)值的大小的方法,規(guī)范解題格式.鞏固練習(xí):(教材P85練習(xí)3).例2.(教材P83例9)解:(略)說明:本例主要考察學(xué)生對(duì)實(shí)際問題題意的理解,把具體的實(shí)際問題化歸為數(shù)學(xué)問題.注意:本例在教學(xué)中,還應(yīng)特別啟發(fā)學(xué)生用所獲得的結(jié)果去解釋實(shí)際現(xiàn)象.鞏固練習(xí):(教材P86習(xí)題2.2A組第6題).歸納小結(jié),強(qiáng)化思想本小節(jié)的目的要求是掌握對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì).在理解對(duì)數(shù)函數(shù)的定義的基礎(chǔ)上,掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì)是本小節(jié)的重點(diǎn).作業(yè)布置必做題:教材P86習(xí)題2.2(A組)第7、8、9、12題.選做題:教材P86習(xí)題2.2(B組)第5題.課題:§2.2.2對(duì)數(shù)函數(shù)(二)教學(xué)任務(wù):(1)進(jìn)一步理解對(duì)數(shù)函數(shù)的圖象和性質(zhì);(2)熟練應(yīng)用對(duì)數(shù)函數(shù)的圖象和性質(zhì),解決一些綜合問題;(3)通過例題和練習(xí)的講解與演練,培養(yǎng)學(xué)生分析問題和解決問題的能力.教學(xué)重點(diǎn):對(duì)數(shù)函數(shù)的圖象和性質(zhì).教學(xué)難點(diǎn):對(duì)對(duì)數(shù)函數(shù)的性質(zhì)的綜合運(yùn)用.教學(xué)過程:回顧與總結(jié)eq\o\ac(○,1eq\o\ac(○,1)eq\o\ac(eq\o\ac(○,2)eq\o\ac(○,3)(2)函數(shù)與且有什么關(guān)系?圖象之間 又有什么特殊的關(guān)系? (3)以的圖象為基礎(chǔ),在同一坐標(biāo)系中畫出的圖象.121234 .教
完成下表(對(duì)數(shù)函數(shù)且的圖象和性質(zhì))圖象定義域值域性質(zhì)根據(jù)對(duì)數(shù)函數(shù)的圖象和性質(zhì)填空.eq\o\ac(○,1)已知函數(shù),則當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.eq\o\ac(○,1)已知函數(shù),則當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.應(yīng)用舉例比較大小:eq\o\ac(○,1),且;eq\o\ac(○,2),.解:(略)例2.已知恒為正數(shù),求的取值范圍.解:(略)[總結(jié)點(diǎn)評(píng)]:(由學(xué)生獨(dú)立思考,師生共同歸納概括). .例3.求函數(shù)的定義域及值域.解:(略)注意:函數(shù)值域的求法.例4.(1)函數(shù)在[2,4]上的最大值比最小值大1,求的值;(2)求函數(shù)的最小值.解:(略)注意:利用函數(shù)單調(diào)性求函數(shù)最值的方法,復(fù)合函數(shù)最值的求法.例5.(2003年上海高考題)已知函數(shù),求函數(shù)的定義域,并討論它的奇偶性和單調(diào)性.解:(略)注意:判斷函數(shù)奇偶性和單調(diào)性的方法,規(guī)范判斷函數(shù)奇偶性和單調(diào)性的步驟.例6.求函數(shù)的單調(diào)區(qū)間.解:(略)注意:復(fù)合函數(shù)單調(diào)性的求法及規(guī)律:“同增異減”.練習(xí):求函數(shù)的單調(diào)區(qū)間.作業(yè)布置考試卷一套課題:§2.2.2對(duì)數(shù)函數(shù)(三)教學(xué)目標(biāo): 知識(shí)與技能理解指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的依賴關(guān)系,了解反函數(shù)的概念,加深對(duì)函數(shù)的模型化思想的理解. 過程與方法通過作圖,體會(huì)兩種函數(shù)的單調(diào)性的異同. 情感、態(tài)度、價(jià)值觀對(duì)體會(huì)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)內(nèi)在的對(duì)稱統(tǒng)一.教學(xué)重點(diǎn):重點(diǎn)難兩種函數(shù)的內(nèi)在聯(lián)系,反函數(shù)的概念.難點(diǎn)反函數(shù)的概念.教學(xué)程序與環(huán)節(jié)設(shè)計(jì): 創(chuàng)設(shè)情境創(chuàng)設(shè)情境組織探究嘗試練習(xí)鞏固反思作業(yè)回饋課外活動(dòng)由函數(shù)的觀點(diǎn)分析例題,引出反函數(shù)的概念.兩種函數(shù)的內(nèi)在聯(lián)系,圖象關(guān)系.簡單的反函數(shù)問題,單調(diào)性問題.從宏觀性、關(guān)聯(lián)性角度試著給指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的定義、圖象、性質(zhì)作一小結(jié).簡單的反函數(shù)問題,單調(diào)性問題.互為反函數(shù)的函數(shù)圖象的關(guān)系.
教學(xué)過程與操作設(shè)計(jì):環(huán)節(jié)呈現(xiàn)教學(xué)材料師生互動(dòng)設(shè)計(jì)創(chuàng)設(shè)情境材料一:當(dāng)生物死亡后,它機(jī)體內(nèi)原有的碳14會(huì)按確定的規(guī)律衰減,大約每經(jīng)過5730年衰減為原來的一半,這個(gè)時(shí)間稱為“半衰期”.根據(jù)些規(guī)律,人們獲得了生物體碳14含量P與生物死亡年數(shù)t之間的關(guān)系.回答下列問題:(1)求生物死亡t年后它機(jī)體內(nèi)的碳14的含量P,并用函數(shù)的觀點(diǎn)來解釋P和t之間的關(guān)系,指出是我們所學(xué)過的何種函數(shù)?(2)已知一生物體內(nèi)碳14的殘留量為P,試求該生物死亡的年數(shù)t,并用函數(shù)的觀點(diǎn)來解釋P和t之間的關(guān)系,指出是我們所學(xué)過的何種函數(shù)?(3)這兩個(gè)函數(shù)有什么特殊的關(guān)系?(4)用映射的觀點(diǎn)來解釋P和t之間的對(duì)應(yīng)關(guān)系是何種對(duì)應(yīng)關(guān)系?(5)由此你能獲得怎樣的啟示?生:獨(dú)立思考完成,討論展示并分析自己的結(jié)果.師:引導(dǎo)學(xué)生分析歸納,總結(jié)概括得出結(jié)論:(1)P和t之間的對(duì)應(yīng)關(guān)系是一一對(duì)應(yīng);(2)P關(guān)于t是指數(shù)函數(shù);t關(guān)于P是對(duì)數(shù)函數(shù),它們的底數(shù)相同,所描述的都是碳14的衰變過程中,碳14含量P與死亡年數(shù)t之間的對(duì)應(yīng)關(guān)系;(3)本問題中的同底數(shù)的指數(shù)函數(shù)和對(duì)數(shù)函數(shù),是描述同一種關(guān)系(碳14含量P與死亡年數(shù)t之間的對(duì)應(yīng)關(guān)系)的不同數(shù)學(xué)模型.材料二:由對(duì)數(shù)函數(shù)的定義可知,對(duì)數(shù)函數(shù)是把指數(shù)函數(shù)中的自變量與因變量對(duì)調(diào)位置而得出的,在列表畫的圖象時(shí),也是把指數(shù)函數(shù)的對(duì)應(yīng)值表里的和的數(shù)值對(duì)換,而得到對(duì)數(shù)函數(shù)的對(duì)應(yīng)值表,如下:表一.環(huán)節(jié)呈現(xiàn)教學(xué)材料師生互動(dòng)設(shè)計(jì)…-3-2-10123……1248…表二.…-3-2-10123……1248…在同一坐標(biāo)系中,用描點(diǎn)法畫出圖象.生:仿照材料一分析:與的關(guān)系.師:引導(dǎo)學(xué)生分析,講評(píng)得出結(jié)論,進(jìn)而引出反函數(shù)的概念.組織探究材料一:反函數(shù)的概念:當(dāng)一個(gè)函數(shù)是一一映射時(shí),可以把這個(gè)函數(shù)的因變量作為一個(gè)新的函數(shù)的自變量,而把這個(gè)函數(shù)的自變量作為新的函數(shù)的因變量,我們稱這兩個(gè)函數(shù)互為反函數(shù).由反函數(shù)的概念可知,同底數(shù)的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)互為反函數(shù).材料二:以與為例研究互為反函數(shù)的兩個(gè)函數(shù)的圖象和性質(zhì)有什么特殊的聯(lián)系?師:說明:(1)互為反函數(shù)的兩個(gè)函數(shù)是定義域、值域相互交換,對(duì)應(yīng)法則互逆的兩個(gè)函數(shù);(2)由反函數(shù)的概念可知“單調(diào)函數(shù)一定有反函數(shù)”;(3)互為反函數(shù)的兩個(gè)函數(shù)是描述同一變化過程中兩個(gè)變量關(guān)系的不同數(shù)學(xué)模型.師:引導(dǎo)學(xué)生探索研究材料二.生:分組討論材料二,選出代表闡述各自的結(jié)論,師生共同評(píng)析歸納.嘗試練習(xí)求下列函數(shù)的反函數(shù):(1);(2)生:獨(dú)立完成.鞏固反思從宏觀性、關(guān)聯(lián)性角度試著給指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的定義、圖象、性質(zhì)作一小結(jié).作業(yè)反饋求下列函數(shù)的反函數(shù):12343579環(huán)節(jié)呈現(xiàn)教學(xué)材料師生互動(dòng)設(shè)計(jì)123435792.(1)試著舉幾個(gè)滿足“對(duì)定義域內(nèi)任意實(shí)數(shù)a、b,都有f(a·b)=f(a)+f(b).”的函數(shù)實(shí)例,你能說出這些函數(shù)具有哪些共同性質(zhì)嗎?(2)試著舉幾個(gè)滿足“對(duì)定義域內(nèi)任意實(shí)數(shù)a、b,都有f(a+b)=f(a)·f(b).”的函數(shù)實(shí)例,你能說出這些函數(shù)具有哪些共同性質(zhì)嗎?答案:1.互換、的數(shù)值.2.略.課外活動(dòng)我們知道,指數(shù)函數(shù),且與對(duì)數(shù)函數(shù),且互為反函數(shù),那么,它們的圖象有什么關(guān)系呢?運(yùn)用所學(xué)的數(shù)學(xué)知識(shí),探索下面幾個(gè)問題,親自發(fā)現(xiàn)其中的奧秘吧!問題1在同一平面直角坐標(biāo)系中,畫出指數(shù)函數(shù)及其反函數(shù)的圖象,你能發(fā)現(xiàn)這兩個(gè)函數(shù)的圖象有什么特殊的對(duì)稱性嗎?問題2取圖象上的幾個(gè)點(diǎn),說出它們關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo),并判斷它們是否在的圖象上,為什么?問題3如果P0(x0,y0)在函數(shù)的圖象上,那么P0關(guān)于直線的對(duì)稱點(diǎn)在函數(shù)的圖象上嗎,為什么?問題4由上述探究過程可以得到什么結(jié)論?問題5上述結(jié)論對(duì)于指數(shù)函數(shù),且及其反函數(shù),且也成立嗎?為什么?結(jié)論:互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)于直線對(duì)稱.課題:§2.3冪函數(shù)教學(xué)目標(biāo): 知識(shí)與技能通過具體實(shí)例了解冪函數(shù)的圖象和性質(zhì),并能進(jìn)行簡單的應(yīng)用. 過程與方法能夠類比研究一般函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的過程與方法,來研究冪函數(shù)的圖象和性質(zhì). 情感、態(tài)度、價(jià)值觀體會(huì)冪函數(shù)的變化規(guī)律及蘊(yùn)含其中的對(duì)稱性.教學(xué)重點(diǎn):重點(diǎn)從五個(gè)具體冪函數(shù)中認(rèn)識(shí)冪函數(shù)的一些性質(zhì).難點(diǎn)畫五個(gè)具體冪函數(shù)的圖象并由圖象概括其性質(zhì),體會(huì)圖象的變化規(guī)律.教學(xué)程序與環(huán)節(jié)設(shè)計(jì): 創(chuàng)設(shè)情境創(chuàng)設(shè)情境組織探究嘗試練習(xí)鞏固反思作業(yè)回饋課外活動(dòng)問題引入.冪函數(shù)的圖象和性質(zhì).冪函數(shù)性質(zhì)的初步應(yīng)用.復(fù)述冪函數(shù)的圖象規(guī)律及性質(zhì).冪函數(shù)性質(zhì)的初步應(yīng)用.利用圖形計(jì)算器或計(jì)算機(jī)探索一般冪函數(shù)的圖象規(guī)律.
教學(xué)過程與操作設(shè)計(jì):環(huán)節(jié)教學(xué)內(nèi)容設(shè)計(jì)師生雙邊互動(dòng)創(chuàng)設(shè)情境閱讀教材P90的具體實(shí)例(1)~(5),思考下列問題:1.它們的對(duì)應(yīng)法則分別是什么?2.以上問題中的函數(shù)有什么共同特征?(答案)1.(1)乘以1;(2)求平方;(3)求立方;(4)開方;(5)取倒數(shù)(或求-1次方).2.上述問題中涉及到的函數(shù),都是形如的函數(shù),其中是自變量,是常數(shù).生:獨(dú)立思考完成引例.師:引導(dǎo)學(xué)生分析歸納概括得出結(jié)論.師生:共同辨析這種新函數(shù)與指數(shù)函數(shù)的異同.組織探究材料一:冪函數(shù)定義及其圖象.一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).下面我們舉例學(xué)習(xí)這類函數(shù)的一些性質(zhì).作出下列函數(shù)的圖象:(1);(2);(3);(4);(5).[解]eq\o\ac(○,1)列表(略)eq\o\ac(○,2)圖象師:說明:冪函數(shù)的定義來自于實(shí)踐,它同指數(shù)函數(shù)、對(duì)數(shù)函數(shù)一樣,也是基本初等函數(shù),同樣也是一種“形式定義”的函數(shù),引導(dǎo)學(xué)生注意辨析.生:利用所學(xué)知識(shí)和方法嘗試作出五個(gè)具體冪函數(shù)的圖象,觀察所圖象,體會(huì)冪函數(shù)的變化規(guī)律.師:引導(dǎo)學(xué)生應(yīng)用畫函數(shù)的性質(zhì)畫圖象,如:定義域、奇偶性.師生共同分析,強(qiáng)調(diào)畫圖象易犯的錯(cuò)誤.環(huán)節(jié)教學(xué)內(nèi)容設(shè)計(jì)師生雙邊互動(dòng)組織探究材料二:冪函數(shù)性質(zhì)歸納.(1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(diǎn)(1,1);(2)時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間上是增函數(shù).特別地,當(dāng)時(shí),冪函數(shù)的圖象下凸;當(dāng)時(shí),冪函數(shù)的圖象上凸;(3)時(shí),冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點(diǎn)時(shí),圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時(shí),圖象在軸上方無限地逼近軸正半軸.師:引導(dǎo)學(xué)生觀察圖象,歸納概括冪函數(shù)的的性質(zhì)及圖象變化規(guī)律.生:觀察圖象,分組討論,探究冪函數(shù)的性質(zhì)和圖象的變化規(guī)律,并展示各自的結(jié)論進(jìn)行交流評(píng)析,并填表.材料三:觀察與思考觀察圖象,總結(jié)填寫下表:定義域值域奇偶性單調(diào)性定點(diǎn)材料五:例題[例1](教材P92例題)[例2]比較下列兩個(gè)代數(shù)值的大?。海?),(2),[例3]討論函數(shù)的定義域、奇偶性,作出它的圖象,并根據(jù)圖象說明函數(shù)的單調(diào)性.師:引導(dǎo)學(xué)生回顧討論函數(shù)性質(zhì)的方法,規(guī)范解題格式與步驟.并指出函數(shù)單調(diào)性是判別大小的重要工具,冪函數(shù)的圖象可以在單調(diào)性、奇偶性基礎(chǔ)上較快描出.生:獨(dú)立思考,給出解答,共同討論、評(píng)析.環(huán)節(jié)呈現(xiàn)教學(xué)材料師生互動(dòng)設(shè)計(jì)嘗試練習(xí)1.利用冪函數(shù)的性質(zhì),比較下列各題中兩個(gè)冪的值的大?。海?),;(2),;(3),;(4),.2.作出函數(shù)的圖象,根據(jù)圖象討論這個(gè)函數(shù)有哪些性質(zhì),并給出證明.3.作出函數(shù)和函數(shù)的圖象,求這兩個(gè)函數(shù)的定義域和單調(diào)區(qū)間.4.用圖象法解方程:(1);(2).探究與發(fā)現(xiàn)1.如圖所示,曲線是冪函數(shù)在第一象限內(nèi)的圖象,已知分別取四個(gè)值,則相應(yīng)圖象依次為:.2.在同一坐標(biāo)系內(nèi),作出下列函數(shù)的圖象,你能發(fā)現(xiàn)什么規(guī)律?(1)和;(2)和.規(guī)律1:在第一象限,作直線,它同各冪函數(shù)圖象相交,按交點(diǎn)從下到上的順序,冪指數(shù)按從小到大的順序排列.規(guī)律2:冪指數(shù)互為倒數(shù)的冪函數(shù)在第一象限內(nèi)的圖象關(guān)于直線對(duì)稱.作業(yè)回饋1.在函數(shù)中,冪函數(shù)的個(gè)數(shù)為:A.0B.1C環(huán)節(jié)呈現(xiàn)教學(xué)材料師生互動(dòng)設(shè)計(jì)2.已知冪函數(shù)的圖象過點(diǎn),試求出這個(gè)函數(shù)的解析式.3.在固定壓力差(壓力差為常數(shù))下,當(dāng)氣體通過圓形管道時(shí),其流量速率R與管道半徑r的四次方成正比.(1)寫出函數(shù)解析式;(2)若氣體在半徑為3cm的管道中,流量速率為400cm3/s,求該氣體通過半徑為r的管道時(shí),其流量速率R的表達(dá)式;(3)已知(2)中的氣體通過的管道半徑為5cm,計(jì)算該氣體的流量速率.4.1992年底世界人口達(dá)到54.8億,若人口的平均增長率為x%,2008年底世界人口數(shù)為y(億),寫出:(1)1993年底、1994年底、2000年底的世界人口數(shù);(2)2008年底的世界人口數(shù)y與x的函數(shù)解析式.課外活動(dòng)利用圖形計(jì)算器探索一般冪函數(shù)的圖象隨的變化規(guī)律.收獲與體會(huì)1.談?wù)勎鍌€(gè)基本冪函數(shù)的定義域與對(duì)應(yīng)冪函數(shù)的奇偶性、單調(diào)性之間的關(guān)系?2.冪函數(shù)與指數(shù)函數(shù)的不同點(diǎn)主要表現(xiàn)在哪些方面?課題:§3.1.1方程的根與函數(shù)的零點(diǎn)教學(xué)目標(biāo): 知識(shí)與技能理解函數(shù)(結(jié)合二次函數(shù))零點(diǎn)的概念,領(lǐng)會(huì)函數(shù)零點(diǎn)與相應(yīng)方程要的關(guān)系,掌握零點(diǎn)存在的判定條件. 過程與方法零點(diǎn)存在性的判定. 情感、態(tài)度、價(jià)值觀在函數(shù)與方程的聯(lián)系中體驗(yàn)數(shù)學(xué)中的轉(zhuǎn)化思想的意義和價(jià)值.教學(xué)重點(diǎn):重點(diǎn)零點(diǎn)的概念及存在性的判定.難點(diǎn)零點(diǎn)的確定.教學(xué)程序與環(huán)節(jié)設(shè)計(jì): 創(chuàng)設(shè)情境創(chuàng)設(shè)情境組織探究嘗試練習(xí)探索研究作業(yè)回饋課外活動(dòng)結(jié)合二次函數(shù)引入課題.二次函數(shù)的零點(diǎn)及零點(diǎn)存在性的.零點(diǎn)存在性為練習(xí)重點(diǎn).進(jìn)一步探索函數(shù)零點(diǎn)存在性的判定.重點(diǎn)放在零點(diǎn)的存在性判斷及零點(diǎn)的確定上.研究二次函數(shù)在零點(diǎn)、零點(diǎn)之內(nèi)及零點(diǎn)外的函數(shù)值符號(hào),并嘗試進(jìn)行系統(tǒng)的總結(jié).研究二次函數(shù)在零點(diǎn)、零點(diǎn)之內(nèi)及零點(diǎn)外的函數(shù)值符號(hào),并嘗試進(jìn)行系統(tǒng)的總結(jié).
教學(xué)過程與操作設(shè)計(jì):環(huán)節(jié)教學(xué)內(nèi)容設(shè)置師生雙邊互動(dòng)創(chuàng)設(shè)情境先來觀察幾個(gè)具體的一元二次方程的根及其相應(yīng)的二次函數(shù)的圖象:eq\o\ac(○,1)方程與函數(shù)eq\o\ac(○,2)方程與函數(shù)eq\o\ac(○,3)方程與函數(shù)師:引導(dǎo)學(xué)生解方程,畫函數(shù)圖象,分析方程的根與圖象和軸交點(diǎn)坐標(biāo)的關(guān)系,引出零點(diǎn)的概念.生:獨(dú)立思考完成解答,觀察、思考、總結(jié)、概括得出結(jié)論,并進(jìn)行交流.師:上述結(jié)論推廣到一般的一元二次方程和二次函數(shù)又怎樣?組織探究函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn).函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).函數(shù)零點(diǎn)的求法:求函數(shù)的零點(diǎn):eq\o\ac(○,1)(代數(shù)法)求方程的實(shí)數(shù)根;eq\o\ac(○,2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).師:引導(dǎo)學(xué)生仔細(xì)體會(huì)左邊的這段文字,感悟其中的思想方法.生:認(rèn)真理解函數(shù)零點(diǎn)的意義,并根據(jù)函數(shù)零點(diǎn)的意義探索其求法:eq\o\ac(○,1)代數(shù)法;eq\o\ac(○,2)幾何法.二次函數(shù)的零點(diǎn):二次函數(shù).1)△>0,方程有兩不等師:引導(dǎo)學(xué)生運(yùn)用函數(shù)零點(diǎn)的意義探索二次函數(shù)零點(diǎn)的情況.環(huán)節(jié)教學(xué)內(nèi)容設(shè)置師生雙邊互動(dòng)組織探究實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).生:根據(jù)函數(shù)零點(diǎn)的意義探索研究二次函數(shù)的零點(diǎn)情況,并進(jìn)行交流,總結(jié)概括形成結(jié)論.零點(diǎn)存在性的探索:(Ⅰ)觀察二次函數(shù)的圖象:eq\o\ac(○,1)在區(qū)間上有零點(diǎn)______;_______,_______,·_____0(<或>).eq\o\ac(○,2)在區(qū)間上有零點(diǎn)______;·____0(<或>).(Ⅱ)觀察下面函數(shù)的圖象eq\o\ac(○,1)在區(qū)間上______(有/無)零點(diǎn);·_____0(<或>).eq\o\ac(○,2)在區(qū)間上______(有/無)零點(diǎn);·_____0(<或>).eq\o\ac(○,3)在區(qū)間上______(有/無)零點(diǎn);·_____0(<或>).由以上兩步探索,你可以得出什么樣的結(jié)論?怎樣利用函數(shù)零點(diǎn)存在性定理,斷定函數(shù)在某給定區(qū)間上是否存在零點(diǎn).生:分析函數(shù),按提示探索,完成解答,并認(rèn)真思考.師:引導(dǎo)學(xué)生結(jié)合函數(shù)圖象,分析函數(shù)在區(qū)間端點(diǎn)上的函數(shù)值的符號(hào)情況,與函數(shù)零點(diǎn)是否存在之間的關(guān)系.生:結(jié)合函數(shù)圖象,思考、討論、總結(jié)歸納得出函數(shù)零點(diǎn)存在的條件,并進(jìn)行交流、評(píng)析.師:引導(dǎo)學(xué)生理解函數(shù)零點(diǎn)存在定理,分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度建筑防水工程防水材料研發(fā)與市場調(diào)研合同
- 金華浙江金華市交通工程管理中心招聘編外人員筆試歷年參考題庫附帶答案詳解
- 遼寧2025年渤海大學(xué)招聘高層次人才92人筆試歷年參考題庫附帶答案詳解
- 湖南2025年湖南省生態(tài)環(huán)境廳直屬事業(yè)單位招聘44人筆試歷年參考題庫附帶答案詳解
- DB2103-T 008-2023 消防技術(shù)服務(wù)機(jī)構(gòu)從業(yè)規(guī)范
- 沈陽2025年遼寧沈陽遼中區(qū)四家事業(yè)單位面向區(qū)內(nèi)事業(yè)單位遴選18人筆試歷年參考題庫附帶答案詳解
- 常州2025年江蘇常州工學(xué)院高層次人才招聘60人(長期)筆試歷年參考題庫附帶答案詳解
- 2025年中國兩側(cè)擋渣器市場調(diào)查研究報(bào)告
- 2025年語音電路項(xiàng)目可行性研究報(bào)告
- 2025年耐高溫硅橡膠項(xiàng)目可行性研究報(bào)告
- 2025年電力鐵塔市場分析現(xiàn)狀
- GB 12158-2024防止靜電事故通用要求
- 《教育強(qiáng)國建設(shè)規(guī)劃綱要(2024-2035年)》全文
- 山東省濱州市2024-2025學(xué)年高二上學(xué)期期末地理試題( 含答案)
- 體育老師籃球說課
- 化學(xué)-江蘇省蘇州市2024-2025學(xué)年2025屆高三第一學(xué)期學(xué)業(yè)期末質(zhì)量陽光指標(biāo)調(diào)研卷試題和答案
- 蛋雞生產(chǎn)飼養(yǎng)養(yǎng)殖培訓(xùn)課件
- 運(yùn)用PDCA降低住院患者跌倒-墜床發(fā)生率
- 海底撈員工手冊(cè)
- 2024CSCO小細(xì)胞肺癌診療指南解讀
- 立春氣象與生活影響模板
評(píng)論
0/150
提交評(píng)論