版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆北京市海淀區(qū)101中學九年級數(shù)學第一學期期末統(tǒng)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.某同學用一根長為(12+4π)cm的鐵絲,首尾相接圍成如圖的扇形(不考慮接縫),已知扇形半徑OA=6cm,則扇形的面積是()A.12πcm2 B.18πcm2 C.24πcm2 D.36πcm22.如圖,在△ABC中,∠C=,∠B=,以點A為圓心,適當長為半徑畫弧,分別交AB,AC于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于P,作射線AP交BC于點D,下列說法不正確的是()
A.∠ADC= B.AD=BD C. D.CD=BD3.如圖,切于兩點,切于點,交于.若的周長為,則的值為()A. B. C. D.4.矩形的長為4,寬為3,它繞矩形長所在直線旋轉一周形成幾何體的全面積是()A.24 B.33 C.56 D.425.如圖,要證明平行四邊形ABCD為正方形,那么我們需要在四邊形ABCD是平行四邊形的基礎上,進一步證明()A.AB=AD且AC⊥BD B.AB=AD且AC=BD C.∠A=∠B且AC=BD D.AC和BD互相垂直平分6.如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C,與x軸交于A,B兩點,其中點B的坐標為B(1,0),拋物線的對稱軸交x軸于點D,CE∥AB,并與拋物線的對稱軸交于點E.現(xiàn)有下列結論:①a>0;②b>0;③1a+2b+c<0;④AD+CE=1.其中所有正確結論的序號是()A.①② B.①③ C.②③ D.②④7.如圖,,、,…是分別以、、,…為直角頂點,一條直角邊在軸正半軸上的等腰直角三角形,其斜邊的中點,,,…均在反比例函數(shù)()的圖象上.則的值為()A. B.6 C. D.8.為了解我縣目前九年級學生對中考體育的重視程度,從全縣5千多名九年級的學生中抽取200名學生作為樣本,對其進行中考體育項目的測試,200名學生的體育平均成績?yōu)?0分則我縣目前九年級學生中考體育水平大概在()A.40分 B.200分 C.5000 D.以上都有可能9.如圖,在平面直角坐標系中,直線分別交軸,軸于兩點,已知點的坐標為,若為線段的中點,連接,且,則的值是()A.12 B.6 C.8 D.410.若不等式組無解,則的取值范圍為()A. B. C. D.11.“泱泱華夏,浩浩千秋.于以求之?旸谷之東.山其何輝,韞卞和之美玉……”這是武漢16歲女孩陳天羽用文言文寫70周年閱兵的觀后感.小汀州同學把這篇氣勢磅礴、文采飛揚的文章放到自己的微博上,并決定用微博轉發(fā)的方式傳播.他設計了如下的傳播規(guī)則:將文章發(fā)表在自己的微博上,再邀請n個好友轉發(fā),每個好友轉發(fā)之后,又邀請n個互不相同的好友轉發(fā),依此類推.已知經(jīng)過兩輪轉發(fā)后,共有111個人參與了宣傳活動,則n的值為()A.9 B.10 C.11 D.1212.若一元二次方程的一個根為,則其另一根是()A.0 B.1 C. D.2二、填空題(每題4分,共24分)13.如圖,兩弦AB、CD相交于點E,且AB⊥CD,若∠B=60°,則∠A等于_____度.14.如圖,在矩形中,點為的中點,交于點,連接,下列結論:①;②;③;④若,則.其中正確的結論是______________.(填寫所有正確結論的序號)15.如圖,四邊形ABCD中,∠BAD=∠BCD=90°,∠B=45°,DE⊥AC于E交AB于F,若BC=2CD,AE=2,則線段BF=______.16.從某玉米種子中抽取6批,在同一條件下進行發(fā)芽試驗,有關數(shù)據(jù)如下:種子粒數(shù)100400800100020005000發(fā)芽種子粒數(shù)8529865279316044005發(fā)芽頻率0.8500.7450.8150.7930.8020.801根據(jù)以上數(shù)據(jù)可以估計,該玉米種子發(fā)芽的概率約為___(精確到0.1).17.由一些大小相同的小正方體搭成的幾何體的主視圖和俯視圖,如圖所示,則搭成該幾何體的小正方體最多是_____個.18.如圖,在?ABCD中,AB=6,BC=6,∠D=30°,點E是AB邊的中點,點F是BC邊上一動點,將△BEF移沿直線EF折疊,得到△GEF,當FG∥AC時,BF的長為_____.三、解答題(共78分)19.(8分)已知關于x的一元二次方程(k﹣1)x2+4x+1=1.(1)若此方程的一個根為﹣1,求k的值;(2)若此一元二次方程有實數(shù)根,求k的取值范圍.20.(8分)如圖①,A(﹣5,0),OA=OC,點B、C關于原點對稱,點B(a,a+1)(a>0).(1)求B、C坐標;(2)求證:BA⊥AC;(3)如圖②,將點C繞原點O順時針旋轉α度(0°<α<180°),得到點D,連接DC,問:∠BDC的角平分線DE,是否過一定點?若是,請求出該點的坐標;若不是,請說明理由.21.(8分)如圖,在長為10cm,寬為8cm的矩形的四個角上截去四個全等的小正方形,使得留下的圖形(圖中陰影部分)面積是原矩形面積的80%,求所截去小正方形的邊長.22.(10分)問題發(fā)現(xiàn):(1)如圖1,內(nèi)接于半徑為4的,若,則_______;問題探究:(2)如圖2,四邊形內(nèi)接于半徑為6的,若,求四邊形的面積最大值;解決問題(3)如圖3,一塊空地由三條直路(線段、AB、)和一條弧形道路圍成,點是道路上的一個地鐵站口,已知千米,千米,,的半徑為1千米,市政府準備將這塊空地規(guī)劃為一個公園,主入口在點處,另外三個入口分別在點、、處,其中點在上,并在公園中修四條慢跑道,即圖中的線段、、、,是否存在一種規(guī)劃方案,使得四條慢跑道總長度(即四邊形的周長)最大?若存在,求其最大值;若不存在,說明理由.23.(10分)如圖,已知拋物線y=ax2+bx+c與x軸交于點A(1,0),B(3,0),且過點C(0,-3).(1)求拋物線的解析式;(2)若點P(4,m)在拋物線上,求△PAB的面積.24.(10分)如圖,在Rt△ABC中,∠ACB=90°.(1)利用尺規(guī)作圖,在BC邊上求作一點P,使得點P到邊AB的距離等于PC的長;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)(2)在(1)的條件下,以點P為圓心,PC長為半徑的⊙P中,⊙P與邊BC相交于點D,若AC=6,PC=3,求BD的長.25.(12分)如圖,某中學準備在校園里利用院墻的一段再用米長的籬笆圍三面,形成一個矩形花園(院墻長米).(1)設米,則___________米;(2)若矩形花園的面積為平方米,求籬笆的長.26.如圖,拋物線經(jīng)過點,點,交軸于點,連接,.(1)求拋物線的解析式;(2)點為拋物線第二象限上一點,滿足,求點的坐標;(3)將直線繞點順時針旋轉,與拋物線交于另一點,求點的坐標.
參考答案一、選擇題(每題4分,共48分)1、A【分析】首先根據(jù)鐵絲長和扇形的半徑求得扇形的弧長,然后根據(jù)弧長公式求得扇形的圓心角,然后代入扇形面積公式求解即可.【題目詳解】解:∵鐵絲長為(12+4π)cm,半徑OA=6cm,∴弧長為4πcm,∴扇形的圓心角為:=120°,∴扇形的面積為:=12πcm2,故選:A.【題目點撥】本題考查了扇形的面積的計算,解題的關鍵是了解扇形的面積公式及弧長公式,難度不大.2、C【分析】由題意可知平分,求出,,利用直角三角形角的性質(zhì)以及等腰三角形的判定和性質(zhì)一一判斷即可.【題目詳解】解:在中,,,,由作圖可知:平分,,故A正確,故B正確,,,,,故C錯誤,設,則,,故D正確,故選:C.【題目點撥】本題考查作圖復雜作圖,角平分線的性質(zhì),線段的垂直平分線的性質(zhì),解直角三角形等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.3、A【分析】利用切線長定理得出,然后再根據(jù)的周長即可求出PA的長.【題目詳解】∵切于兩點,切于點,交于∴的周長為∴故選:A.【題目點撥】本題主要考查切線長定理,掌握切線長定理是解題的關鍵.4、D【分析】旋轉后的幾何體是圓柱體,先確定出圓柱的底面半徑和高,再根據(jù)圓柱的表面積公式計算即可求解.【題目詳解】解:π×3×2×4+π×32×2=24π+18π=42π(cm2);故選:D.【題目點撥】本題主要考查的是點、線、面、體,根據(jù)圖形確定出圓柱的底面半徑和高的長是解題的關鍵.5、B【解題分析】解:A.根據(jù)有一組鄰邊相等的平行四邊形是菱形,或者對角線互相垂直的平行四邊形是菱形,所以不能判斷平行四邊形ABCD是正方形;B.根據(jù)鄰邊相等的平行四邊形是菱形,對角線相等的平行四邊形為矩形,所以能判斷四邊形ABCD是正方形;C.根據(jù)一組鄰角相等的平行四邊形是矩形,對角線相等的平行四邊形也是矩形,即只能證明四邊形ABCD是矩形,不能判斷四邊形ABCD是正方形;D.根據(jù)對角線互相垂直的平行四邊形是菱形,對角線互相平分的四邊形是平行四邊形,所以不能判斷四邊形ABCD是正方形.故選B.6、D【分析】①根據(jù)拋物線開口方向即可判斷;②根據(jù)對稱軸在y軸右側即可判斷b的取值范圍;③根據(jù)拋物線與x軸的交點坐標與對稱軸即可判斷;④根據(jù)拋物線與x軸的交點坐標及對稱軸可得AD=BD,再根據(jù)CE∥AB,即可得結論.【題目詳解】①觀察圖象開口向下,a<0,所以①錯誤;②對稱軸在y軸右側,b>0,所以②正確;③因為拋物線與x軸的一個交點B的坐標為(1,0),對稱軸在y軸右側,所以當x=2時,y>0,即1a+2b+c>0,所以>③錯誤;④∵拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點,∴AD=BD.∵CE∥AB,∴四邊形ODEC為矩形,∴CE=OD,∴AD+CE=BD+OD=OB=1,所以④正確.綜上:②④正確.故選:D.【題目點撥】本題考查了二次函數(shù)圖象與系數(shù)的關系,解決本題的關鍵是綜合運用二次函數(shù)圖象上點的坐標特征、拋物線與x軸的交點進行計算.7、A【分析】過點分別作x軸的垂線,垂足分別為,得出△為等腰直角三角形,進而求出,再逐一求出,…的值,即可得出答案.【題目詳解】如圖,過點分別作x軸的垂線,垂足分別為∵△為等腰直角三角形,斜邊的中點在反比例函數(shù)的圖像上∴(2,2),即∴設,則此時(4+a,a)將(4+a,a)代入得a(4+a)=4解得或(負值舍去)即同理,,…,∴故答案選擇A.【題目點撥】本題考查的是反比例函數(shù)的圖像與性質(zhì)以及反比例函數(shù)上點的特征,難度系數(shù)較大,解題關鍵是根據(jù)點在函數(shù)圖像上求出y的值.8、A【分析】平均數(shù)可以反映一組數(shù)據(jù)的一般情況、和平均水平,樣本的平均數(shù)即可估算出總體的平均水平.【題目詳解】∵200名學生的體育平均成績?yōu)?0分,∴我縣目前九年級學生中考體育水平大概在40分,故選:A.【題目點撥】本題考查用樣本平均數(shù)估計總體的平均數(shù),平均數(shù)是描述數(shù)據(jù)集中位置的一個統(tǒng)計量,既可以用它來反映一組數(shù)據(jù)的一般情況、和平均水平,也可以用它進行不同組數(shù)據(jù)的比較,以看出組與組之間的差別.9、A【分析】根據(jù)“一線三等角”,通過構造相似三角形,對m的取值進行分析討論即可求出m的值.【題目詳解】由已知得,∴.如圖,在軸負半軸上截取,可得是等腰直角三角形,∴.又∵,∴,∴,∴,即,解得(舍去)或,的值是12.【題目點撥】本題考查了相似三角形的判定與性質(zhì)的知識點,解題時還需注意分類討論的數(shù)學思想的應用10、A【分析】求出第一個不等式的解集,根據(jù)口訣:大大小小無解了可得關于m的不等式,解之可得.【題目詳解】解不等式,得:x>8,∵不等式組無解,∴4m≤8,解得m≤2,故選A.【題目點撥】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.11、B【分析】根據(jù)傳播規(guī)則結合經(jīng)過兩輪轉發(fā)后共有111個人參與了宣傳活動,即可得出關于n的一元二次方程,解之取其正值即可得出結論.【題目詳解】解:依題意,得:1+n+n2=111,解得:n1=10,n2=﹣11(不合題意,舍去).故選:B.【題目點撥】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.12、C【分析】把代入方程求出的值,再解方程即可.【題目詳解】∵一元二次方程的一個根為∴解得∴原方程為解得故選C【題目點撥】本題考查一元二次方程的解,把方程的解代入方程即可求出參數(shù)的值.二、填空題(每題4分,共24分)13、30【解題分析】首先根據(jù)圓周角定理,得∠A=∠BDC,再根據(jù)三角形的內(nèi)角和定理即可求得∠BDC的度數(shù),從而得出結論.【題目詳解】∵AB⊥CD,∴∠DEB=90°,∵∠B=60°∴∠BDC=90°-∠B=90°-60°=30°,∴∠A=∠BDC=30°,故答案為30°.【題目點撥】綜合運用了圓周角定理以及三角形的內(nèi)角和定理.14、①③④【分析】根據(jù)矩形的性質(zhì)和余角的性質(zhì)可判斷①;延長CB,F(xiàn)E交于點G,根據(jù)ASA可證明△AEF≌△BEG,可得AF=BG,EF=EG,進一步即可求得AF、BC與CF的關系,S△CEF與S△EAF+S△CBE的關系,進而可判斷②與③;由,結合已知和銳角三角函數(shù)的知識可得,進一步即可根據(jù)AAS證明結論④;問題即得解決.【題目詳解】解:∵,,∵四邊形ABCD是矩形,∴∠B=90°,∴,,所以①正確;延長CB,F(xiàn)E交于點G,如圖,在△AEF和△BEG中,∵∠FAE=∠GBE=90°,AE=BE,∠AEF=∠BEG,∴△AEF≌△BEG(ASA),∴AF=BG,EF=EG,∴S△CEG=S△CEF,∵CE⊥EG,∴CG=CF,∴AF+BC=BG+BC=CG=CF,所以②錯誤;∴S△CEF=S△CEG=S△BEG+S△CBE=S△EAF+S△CBE,所以③正確;若,則,,,在和中,∵∠CEF=∠D=90°,,CF=CF,≌,所以④正確.綜上所述,正確的結論是①③④.故答案為:①③④.【題目點撥】本題考查了矩形的性質(zhì)、余角的性質(zhì)、全等三角形的判定和性質(zhì)以及銳角三角函數(shù)等知識,綜合性較強,屬于??碱}型,正確添加輔助線、熟練掌握上述基本知識是解題的關鍵.15、【分析】連接,延長BA,CD交于點,根據(jù)∠BAD=∠BCD=90°可得點A、B、C、D四點共圓,根據(jù)圓周角定理可得,根據(jù)DE⊥AC可證明△AED∽△BCD,可得,利用勾股定理可求出AD的長,由∠ABC=45°可得△ABG為等腰直角三角形,進而可得△ADG是等腰直角三角形,即可求出AG、DG的長,根據(jù)BC=2CD可求出CD、BC、AB的長,根據(jù),可證明△AED∽△FAD,根據(jù)相似三角形的性質(zhì)可求出AF的長,即可求出BF的長.【題目詳解】連接,延長BA,CD交于點,∵,∴四點共圓,∴,∵,∴,∴△AED∽△BCD,∴,∴,∴AD==,∵∴是等腰直角三角形,∵BC=2CD,∴∴CD=DG,∵,∴是等腰直角三角形,∴,∴,∵,,∴△AED∽△FAD,∴,∴∴.【題目點撥】本題考查圓周角定理、勾股定理及相似三角形的判定與性質(zhì),如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;如果兩個三角形的兩組對應邊的比相等,并且對應的夾角相等,那么這兩個三角形相似;如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;熟練掌握相似三角形的判定定理是解題關鍵.16、0.1【分析】6批次種子粒數(shù)從100粒增加到5000粒時,種子發(fā)芽的頻率趨近于0.101,所以估計種子發(fā)芽的概率為0.101,再精確到0.1,即可得出答案.【題目詳解】根據(jù)題干知:當種子粒數(shù)5000粒時,種子發(fā)芽的頻率趨近于0.101,故可以估計種子發(fā)芽的概率為0.101,精確到0.1,即為0.1,故本題答案為:0.1.【題目點撥】本題比較容易,考查利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.17、1【分析】根據(jù)幾何體的三視圖可進行求解.【題目詳解】解:根據(jù)題意得:則搭成該幾何體的小正方體最多是1+1+1+2+2=1(個).故答案為1.【題目點撥】本題主要考查幾何體的三視圖,熟練掌握幾何體的三視圖是解題的關鍵.18、或【分析】由平行四邊形的性質(zhì)得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,得出AH=DH,由線段垂直平分線的性質(zhì)得出CA=CD=AB=6,由等腰三角形的性質(zhì)得出∠ACB=∠B=30°,由平行線的性質(zhì)得出∠BFG=∠ACB=30°,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,則∠ENB=∠B=30°,由直角三角形的性質(zhì)得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再證出FN=EN=3,即可得出結果;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,則∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,證出FG∥EN,則∠G=∠GEN,證出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折疊的性質(zhì)得∠BEF=∠GEF=∠BEG=45°,證出∠NEF=∠NFE,則FN=EN=3,即可得出結果.【題目詳解】解:∵四邊形ABCD是平行四邊形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵點E是AB邊的中點,∴BE=3,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,連接EN,如圖1所示:則∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折疊的性質(zhì)得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,如圖2所示:則∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折疊的性質(zhì)得:∠B=∠G=30°,∴∠GEN=∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折疊的性質(zhì)得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案為:或.【題目點撥】本題考查了翻折變換的性質(zhì)、平行四邊形的性質(zhì)、直角三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)等知識;掌握翻折變換的性質(zhì)和等腰三角形的性質(zhì)是解答本題的關鍵.三、解答題(共78分)19、(2);(2)且.【分析】(2)把x=﹣2代入原方程求k值;(2)一元二次方程的判別式是非負數(shù),且二次項系數(shù)不等于2.【題目詳解】解:(2)將x=﹣2代入一元二次方程(k﹣2)x2+4x+2=2得,(k﹣2)﹣4+2=2,解得k=4;(2)∵若一元二次方程(k﹣2)x2+4x+2=2有實數(shù)根,∴△=26﹣4(k﹣2)≥2,且k﹣2≠2解得k≤5且k﹣2≠2,即k的取值范圍是k≤5且k≠2.20、(1)點B(3,4),點C(﹣3,﹣4);(2)證明見解析;(3)定點(4,3);理由見解析.【分析】(1)由中心對稱的性質(zhì)可得OB=OC=5,點C(﹣a,﹣a﹣1),由兩點距離公式可求a的值,即可求解;(2)由兩點距離公式可求AB,AC,BC的長,利用勾股定理的逆定理可求解;(3)由旋轉的性質(zhì)可得DO=BO=CO,可得△BCD是直角三角形,以BC為直徑,作⊙O,連接OH,DE與⊙O交于點H,由圓周角定理和角平分線的性質(zhì)可得∠HBC=∠CDE=45°=∠BDE=∠BCH,可證CH=BH,∠BHC=90°,由兩點距離公式可求解.【題目詳解】解:(1)∵A(﹣5,0),OA=OC,∴OA=OC=5,∵點B、C關于原點對稱,點B(a,a+1)(a>0),∴OB=OC=5,點C(﹣a,﹣a﹣1),∴5=,∴a=3,∴點B(3,4),∴點C(﹣3,﹣4);(2)∵點B(3,4),點C(﹣3,﹣4),點A(﹣5,0),∴BC=10,AB=4,AC=2,∵BC2=100,AB2+AC2=80+20=100,∴BC2=AB2+AC2,∴∠BAC=90°,∴AB⊥AC;(3)過定點,理由如下:∵將點C繞原點O順時針旋轉α度(0°<α<180°),得到點D,∴CO=DO,又∵CO=BO,∴DO=BO=CO,∴△BCD是直角三角形,∴∠BDC=90°,如圖②,以BC為直徑,作⊙O,連接OH,DE與⊙O交于點H,∵DE平分∠BDC,∴∠BDE=∠CDE=45°,∴∠HBC=∠CDE=45°=∠BDE=∠BCH,∴CH=BH,∠BHC=90°,∵BC=10,∴BH=CH=5,OH=OB=OC=5,設點H(x,y),∵點H在第四象限,∴x<0,y>0,∴x2+y2=25,(x﹣3)2+(y﹣4)2=50,∴x=4,y=3,∴點H(4,﹣3),∴∠BDC的角平分線DE過定點H(4,3).【題目點撥】本題是幾何變換綜合題,考查了中心對稱的性質(zhì),直角三角形的性質(zhì),角平分線的性質(zhì),圓的有關知識,勾股定理的逆定理,兩點距離公式等知識,靈活運用這些性質(zhì)解決問題是本題的關鍵.21、截去的小正方形的邊長為2cm.【分析】由等量關系:矩形面積﹣四個全等的小正方形面積=矩形面積×80%,列方程即可求解【題目詳解】設小正方形的邊長為xcm,由題意得10×8﹣1x2=80%×10×8,80﹣1x2=61,1x2=16,x2=1.解得:x1=2,x2=﹣2,經(jīng)檢驗x1=2符合題意,x2=﹣2不符合題意,舍去;所以x=2.答:截去的小正方形的邊長為2cm.22、(1);(2)四邊形ABCD的面積最大值是;(3)存在,其最大值為.【分析】(1)連接OA、OB,作OH⊥AB于H,利用求出∠AOH=∠AOB=,根據(jù)OA=4,利用余弦公式求出AH,即可得到AB的長;(2)連接AC,由得出AC=,再根據(jù)四邊形的面積=,當DH+BM最大時,四邊形ABCD的面積最大,得到BD是直徑,再將AC、BD的值代入求出四邊形面積的最大值即可;(3)先證明△ADM≌△BMC,得到△CDM是等邊三角形,求得等邊三角形的邊長CD,再根據(jù)完全平方公式的關系得出PD=PC時PD+PC最大,根據(jù)CD、∠DPC求出PD,即可得到四邊形周長的最大值.【題目詳解】(1)連接OA、OB,作OH⊥AB于H,∵,∴∠AOB=120.∵OH⊥AB,∴∠AOH=∠AOB=,AH=BH=AB,∵OA=4,∴AH=,∴AB=2AH=.故答案為:.(2)∵∠ABC=120,四邊形ABCD內(nèi)接于,∴∠ADC=60,∵的半徑為6,∴由(1)得AC=,如圖,連接AC,作DH⊥AC,BM⊥AC,∴四邊形的面積=,當DH+BM最大時,四邊形ABCD的面積最大,連接BD,則BD是的直徑,∴BD=2OA=12,BD⊥AC,∴四邊形的面積=.∴四邊形ABCD的面積最大值是(3)存在;∵千米,千米,,∴△ADM≌△BMC,∴DM=MC,∠AMD=∠BCM,∵∠BCM+∠BMC=180-∠B=120,∴∠AMD+∠BMC=120,∴∠DMC=60,∴△CDM是等邊三角形,∴C、D、M三點共圓,∵點P在弧CD上,∴C、D、M、P四點共圓,∴∠DPC=180-∠DMC=120,∵弧的半徑為1千米,∠DMC=60,∴CD=,∵,∴,∴,∴當PD=PC時,PD+PC最大,此時點P在弧CD的中點,交DC于H,在Rt△DPH中,∠DHP=90,∠DPH=60,DH=DC=,∴,∴四邊形的周長最大值=DM+CM+DP+CP=.【題目點撥】此題是一道綜合題,考查圓的性質(zhì),垂徑定理,三角函數(shù),三角形全等的判定及性質(zhì),動點最大值等知識點.(1)中問題發(fā)現(xiàn)的結論應用很主要,理解題意在(2)、(3)中應用解題,(3)的PD+PC最大值的確定是難點,注意與所學知識的結合才能更好的解題.23、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國口服滲透泵行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2024年遼寧中考數(shù)學臨考押題卷解析版
- 2024年全國高考語文試題分類匯編:詞語(成語、熟語等)含詳細解答
- 《財政與金融(第2版)》 課件全套 趙立華 第1-16章 財政的概念與職能-宏觀調(diào)控
- 二零二五年度購車贈送車載安全預警系統(tǒng)合同(行車安全)3篇
- 2025年度個人與公司租賃房屋修繕責任合同3篇
- 浙江2025年浙江自然博物院(安吉館)招聘編外工作人員筆試歷年參考題庫附帶答案詳解
- 濟南2025年中共濟南市委黨校(濟南行政學院)引進博士研究生6人筆試歷年參考題庫附帶答案詳解
- 河南2024年河南信陽師范大學招聘碩士研究生42人筆試歷年參考題庫附帶答案詳解
- 漢中2025年陜西漢中市中心醫(yī)院招聘30人筆試歷年參考題庫附帶答案詳解
- 數(shù)學-山東省2025年1月濟南市高三期末學習質(zhì)量檢測濟南期末試題和答案
- 中儲糧黑龍江分公司社招2025年學習資料
- 2024-2025學年人教版三年級(上)英語寒假作業(yè)(九)
- 河南退役軍人專升本計算機真題答案
- 湖南省長沙市2024-2025學年高一數(shù)學上學期期末考試試卷
- 船舶行業(yè)維修保養(yǎng)合同
- 駕駛證學法減分(學法免分)試題和答案(50題完整版)1650
- 2024年林地使用權轉讓協(xié)議書
- 物流有限公司安全生產(chǎn)專項整治三年行動實施方案全國安全生產(chǎn)專項整治三年行動計劃
- 2025屆江蘇省13市高三最后一卷生物試卷含解析
- 產(chǎn)鉗助產(chǎn)護理查房
評論
0/150
提交評論