2022上海市市北職業(yè)高級(jí)中學(xué)高二數(shù)學(xué)理月考試卷含解析_第1頁(yè)
2022上海市市北職業(yè)高級(jí)中學(xué)高二數(shù)學(xué)理月考試卷含解析_第2頁(yè)
2022上海市市北職業(yè)高級(jí)中學(xué)高二數(shù)學(xué)理月考試卷含解析_第3頁(yè)
2022上海市市北職業(yè)高級(jí)中學(xué)高二數(shù)學(xué)理月考試卷含解析_第4頁(yè)
2022上海市市北職業(yè)高級(jí)中學(xué)高二數(shù)學(xué)理月考試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022上海市市北職業(yè)高級(jí)中學(xué)高二數(shù)學(xué)理月考試卷含

解析

一、選擇題:本大題共1()小題,每小題5分,共50分。在每小題給出的四個(gè)選

項(xiàng)中,只有是一個(gè)符合題目要求的

1.設(shè)掰*是兩條不同的直線,③不是兩個(gè)不同的平面,下列命題正確的是()

A.若掰_L科他則a〃戶(hù)

B.若加〃尸.貝

C.若切,a,附〃尸,尸,則郡

D.若用〃a,;〃戶(hù),則?!ā?/p>

參考答案:

C

z_jO2.

2.已知復(fù)數(shù)一而(其中,為虛數(shù)單位),則=

A.3由B.3V2C.2丫年D.2、/5

參考答案:

B

3.已知函數(shù)y=/(X)是定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)

刀€("€0.0對(duì)./(;0+球'口)<0成立(其中/'(X虎/1(X)的導(dǎo)函數(shù)),若4=物(密,

卜時(shí)如血處,“3赳跖P,則4,白C的大小關(guān)系是

()

A.c>a>bB.c>b>ac_a>b>c]).a>c>b

參考答案:

A

4.若a>〃,則下列不等式中正確的是()。

33—>1

A.a>bB.bC.

2*>2*D.ha>lnb

參考答案:

C

5.如圖,在AABC中,AD_LAB,BC=^BD,AD=1,則而?/等于()

參考答案:

B

考點(diǎn):向量在幾何中的應(yīng)用.

專(zhuān)題:解三角形;平面向量及應(yīng)用.

分析:利用平面向量的基本運(yùn)算與解三角形的基礎(chǔ)知識(shí),求解向量的數(shù)量積即可.

解答:解:而■記I標(biāo)I,I菽IcosNDAC,

V|AD|=1,

AAC?AD=IADI-1AClcosZDAC=|AC|?cosZDAC,

ZBAC=T+ZDAC,

/.cosZDAC=sinZBAC,

AC?AD=IADI*IAClcosZDAC=|AC|?cosZDAC=iAC|sinZBAC,

I菽I辰I

在△ABC中,由正弦定理得sinB=sin/BAC變形得|AC|sinNBAC=〕BCsinB,

AC?AD=IAD!?IAC|cosZDAC=|AC|?cosZDAC=|AC|sinZBAC,

|AD|

=|BC|sinB=|BC|?lBDl=V3,

故選:B.

點(diǎn)評(píng):本題考查平面向量的數(shù)量積,向量在幾何中的應(yīng)用,平面向量的身影,且均屬于中

等題或難題,應(yīng)加強(qiáng)平面向量的基本運(yùn)算的訓(xùn)練,尤其是與三角形綜合的問(wèn)題

6.設(shè)全集。=”,集合,一{"a】>。},B={x|0<x<2)則(DUA=()

A.[1,2)B.(0,3]C.[1,3)D.(0,2)

參考答案:

B

【分析】

先由分式不等式的解法求出集合/,再由集合并集的運(yùn)算即可得解.

【詳解】解:由題得集合或*>努,所以41=任|14不$3),又集合

5=[中所以(3)uA-30<x43]

故選B.

【點(diǎn)睛】本題考查了補(bǔ)集及集合的運(yùn)算,屬基礎(chǔ)題.

7.已知三條直線Q,b,G若a和b是異面直線,3和c是異面直線,那么直線a和c的位置

關(guān)系是()

A.平行B.相交C.異

面D.平行、相交或異面

參考答案:

D

8.若。?8(10,),則P(支2)=()

A.B.C,D.

參考答案:

C

9.函數(shù)y=x2cosx的導(dǎo)數(shù)為)

A.y'=2xcosx-x2sinxB./=2xcosx+x2sinx

C./=x2cosx—2xs\nxD.y'=xcosx-x2s\nx

參考答案:

A

10.下列圖形中,

不是三棱柱的展開(kāi)圖()

??

II

i?

D.

參考答案:

C

二、填空題:本大題共7小題,每小題4分,共28分

11.直線2x-y-4=。上有一點(diǎn)p,它與兩定點(diǎn)”(4.-1),3(3,4)的距離之差最大則p

點(diǎn)坐標(biāo)是.

參考答案:

(3,-1)

12.命題“女6兄'+"+240,,的否定是:

參考答案:

~.rs+2.V+2>0。

13.曲線,='一】與直線x=Zy=°所圍成的區(qū)域的面積為.

參考答案:

4

3

S=i(x2-IMr=-——-(2-9=-

試題分析:*33,故應(yīng)填3.

考點(diǎn):定積分的計(jì)算公式及運(yùn)用.

14.已知i為虛數(shù)單位,則其連續(xù)2017個(gè)正整數(shù)次幕之和1+12+13+—+12"7=

參考答案:

i

【考點(diǎn)】虛數(shù)單位i及其性質(zhì).

【分析】利用復(fù)數(shù)的周期性、等比數(shù)列的求和公式即可得出.

【解答】解:了=1,內(nèi)2。17=(j4)504?i=i.

i(1—2017)式1-0

.?.i+i2+P+...+i2OI7=1-i=1-i=i.

故答案為:i.

1_

15.若三角形的內(nèi)切圓半徑為r,三邊的長(zhǎng)分別為a,b,c,則三角形的面積S=Er

(a+b+c),根據(jù)類(lèi)比思想,若四面體的內(nèi)切球半徑為R,四個(gè)面的面積分別為$、SZ、

S3、Si,則此四面體的體積V=.

參考答案:

1

赤(S1+S2+S3+SO

【考點(diǎn)】類(lèi)比推理;棱柱、棱錐、棱臺(tái)的體積.

【分析】根據(jù)平面與空間之間的類(lèi)比推理,由點(diǎn)類(lèi)比點(diǎn)或直線,由直線類(lèi)比直線或平

面,由內(nèi)切圓類(lèi)比內(nèi)切球,由平面圖形面積類(lèi)比立體圖形的體積,結(jié)合求三角形的面積的

方法類(lèi)比求四面體的體積即可.

【解答】解:設(shè)四面體的內(nèi)切球的球心為0,

則球心0到四個(gè)面的距離都是R,

所以四面體的體積等于以0為頂點(diǎn),

分別以四個(gè)面為底面的4個(gè)三棱錐體積的和.

故答案為:-3R(S1+S2+S3+S4).

16.(4分)函數(shù)y=^3-2x-X2的值域是

參考答案:

17.(5分)由1、2、3、4、5組成個(gè)位數(shù)字不是3的沒(méi)有重復(fù)數(shù)字的五位奇數(shù)共有

個(gè)(用數(shù)字作答).

參考答案:

由題意,末尾數(shù)字為5或3,其余位置任意排列,所以奇數(shù)共有2xA;=48個(gè)

故答案為:48

由題意,末尾數(shù)字為5或3,其余位置任意排列,從而可得結(jié)論

三、解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算

步驟

zz

O9

18.已知拋物線3:y2=2px(p>0)與雙曲線Cz:a-b=1(a>0.b>0)有公共焦點(diǎn)

F,且在第一象限的交點(diǎn)為P(3,2灰).

(1)求拋物線G,雙曲線C2的方程;

(2)過(guò)點(diǎn)F且互相垂直的兩動(dòng)直線被拋物線G截得的弦分別為AB,CD,弦AB、CD的中

點(diǎn)分別為G、H,探究直線GH是否過(guò)定點(diǎn),若GH過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若直線GH不過(guò)

定點(diǎn),說(shuō)明理由.

參考答案:

【考點(diǎn)】拋物線的簡(jiǎn)單性質(zhì).

【分析】(1)P(3,2娓)代入拋物線G:y2=2px(p>0),可得p,求出拋物線方

(924,

22-i

?akb

oo

程.焦點(diǎn)F(2,0),則+,求出a,b,可得雙曲線心的方程;

(2)欲證明直線GH過(guò)定點(diǎn),只需求出含參數(shù)的直線GH的方程,觀察是否過(guò)定點(diǎn)即

可.設(shè)出A,B,G,H的坐標(biāo),用A,B坐標(biāo)表示G,H坐標(biāo),求出直線GH方程,化為點(diǎn)斜

式,可以發(fā)現(xiàn)直線必過(guò)點(diǎn)(3,0).

【解答】解:(1)P(3,276)代入拋物線G:y2=2px(p>0),可得p=4,.?.拋物線

Ci:y2=8x;

9241

T廣2_/

焦點(diǎn)F(2,0),則Ia2+b2=4,;.a=i,b=J5,.?.雙曲線G的方程'3=1;

(2)設(shè)點(diǎn)A(xi,yD,B(X2,y2),G(x3,ys),H(x4,y-i)

把直線AB:y=k(x-2)代入y~8x,得:

J-4

2~~

222

kx-(4k+8)x+4k'=0,xs=2+k,y3=k(x3-2)=k,

J

同理可得,x.(=2+4k,y4=-4k,

4k4k

2-52

...直線GH為y-k=l-k(x-2-k),即y=l-k(x-3),過(guò)定點(diǎn)P(3,0).

19.(本小題滿(mǎn)分14分)

通過(guò)隨機(jī)詢(xún)問(wèn)某校110名高中學(xué)生在購(gòu)買(mǎi)食物時(shí)是否看營(yíng)養(yǎng)說(shuō)明,得到如下的列聯(lián)

表:

(1)從這50名女生中按是否看營(yíng)養(yǎng)說(shuō)明采取分層抽樣,抽取一個(gè)容量為5的樣

本,問(wèn)樣本中看與不看營(yíng)養(yǎng)說(shuō)明的女生各有多少名?

(2)從(1)中的5名女生樣本中隨機(jī)選取兩名作深度訪談,求選到看與不看營(yíng)養(yǎng)

說(shuō)明的女生各一名的概率;

(3)根據(jù)以上列聯(lián)表,問(wèn)有多大把握認(rèn)為“性別與在購(gòu)買(mǎi)食物時(shí)看營(yíng)養(yǎng)說(shuō)明”有

關(guān)?

性別與看營(yíng)養(yǎng)說(shuō)明列聯(lián)表單位:名

男女總計(jì)

看營(yíng)養(yǎng)說(shuō)明503080

不看營(yíng)養(yǎng)說(shuō)明102030

總計(jì)605011()

參考答案:

解:(1)根據(jù)分層抽樣可得:樣本中看營(yíng)養(yǎng)說(shuō)明的女生有否"名,樣本中

—x20=2

不看營(yíng)養(yǎng)說(shuō)明的女生有50名;2分

(2)記樣本中看營(yíng)養(yǎng)說(shuō)明的3名女生為的?與?%,不看營(yíng)養(yǎng)說(shuō)明的2名女生為

不功,從這5名女生中隨機(jī)選取兩名,共有10個(gè)等可能的基本事件為:為,。2;

4卜。3,.?,??&?,冬,“2?瓦,.與向?,。3每?,%,4,多?...........RD

其中事件H“選到看與不看營(yíng)養(yǎng)說(shuō)明的女生各一名”包含了6個(gè)的基本事件:

%?灰;%?&;“Z,'】;%.瓦;。3?九。342..................7分

P(A)=—=-7.

所以所求的概率為105............................9分

(3)假設(shè)耳。:該校高中學(xué)生性別與在購(gòu)買(mǎi)食物時(shí)看營(yíng)養(yǎng)說(shuō)明無(wú)關(guān),則<2應(yīng)該很

小.

」110x(50x20-30xl0)2539

根據(jù)題中的列聯(lián)表得80x30x60x5072.....12分

WJS6635)=00l0

有99%的把握認(rèn)為該校高中學(xué)生“性別與在購(gòu)買(mǎi)食物時(shí)看營(yíng)養(yǎng)說(shuō)明”有關(guān)14分

20.(12分)兩艘輪船都??客粋€(gè)泊位,它們可能在一晝夜的任意時(shí)刻到達(dá),甲、乙兩船

??坎次坏臅r(shí)間分別為4h與2h,求有一艘輪船??坎次粫r(shí)必須等待一段時(shí)間的概率.

參考答案:

67

288

21.(本小題滿(mǎn)分13分)已知數(shù)列|S*}中,ai=[,41=24+1,令b*=—

(1)證明:數(shù)列色,}是等比數(shù)列;

5+6〃+D>12Q

(2)設(shè)數(shù)列(㈤J的前n項(xiàng)和為邑,求使"成立的正整數(shù)n的最小值.

參考答案:

(l)iiE明?由。-得+兩式相減用?(4.-4)-2(4

一—????w?w*■?■

4?2。1(川€N)?又4?0-q.(2,.lAq.%.1.2.

(卬是以2為百項(xiàng),公比為2的等比數(shù)列.........5分

由⑴得4=2",即--4=2",

a,wl

4-4+(例-功1).4.例)+*,,,*"-1+2+2+???2-2*-1(.......7分

na=n2*-n二品?。2l-1)+(22*-1)■?>—?(?2*-M)■(12*4-2-+…+”2*)-?:"

?,X

令r?l2+22*+…+H2?①,則2T?12'+22*+…+8-D2*+”T*1②,

①-②得:”--2+L-n尸,-T/-DL+2,

2+1J^>I20,1ICI-1)2***2>120?即(M-l)2**>118

由29

...當(dāng)”e5時(shí),S-l>”單調(diào)遞增,...正整數(shù)n的最小取值為5.……13分

22.在平面直角坐標(biāo)系xoy中,點(diǎn)A(0,3),直線1:y=2x-4,設(shè)圓C的半徑為1,圓心

在1上.(1)若圓心C也在直線y=x-3上,過(guò)點(diǎn)A作圓C的切線,求切線的方程;(2)

若圓C上存在點(diǎn)M,使得|MA=2|M0,求圓心C的橫坐標(biāo)的取值范圍.

參考答案:

/y—2x-4,

(1)由&'

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論