




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆安徽省六安市舒城縣數(shù)學九年級第一學期期末學業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.關于x的一元二次方程x2+ax﹣1=0的根的情況是()A.沒有實數(shù)根 B.只有一個實數(shù)根C.有兩個相等的實數(shù)根 D.有兩個不相等的實數(shù)根2.將二次函數(shù)y=2x2+2的圖象先向左平移3個單位長度,再向下平移1個單位長度后所得新函數(shù)圖象的表達式為()A.y=2(x﹣1)2+3 B.y=﹣2(x+3)2+1C.y=2(x﹣3)2﹣1 D.y=2(x+3)2+13.如圖,在△ABC中,AB=AC,D、E、F分別是邊AB、AC、BC的中點,若CE=2,則四邊形ADFE的周長為()A.2 B.4 C.6 D.84.如圖,四邊形ABCD內接于⊙O,連接OB、OD,若∠BOD=∠BCD,則∠A的度數(shù)為()A.60° B.70° C.50° D.45°5.如圖,AB是⊙的直徑,AC是⊙的切線,A為切點,BC與⊙交于點D,連結OD.若,則∠AOD的度數(shù)為()A. B. C. D.6.用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽(如圖所示),則這個紙帽的高是()A.cm B.3cm C.4cm D.4cm7.如圖,在銳角△ABC中,∠A=60°,∠ACB=45°,以BC為弦作⊙O,交AC于點D,OD與BC交于點E,若AB與⊙O相切,則下列結論:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤正確的有()A.①② B.①④⑤ C.①②④⑤ D.①②③④⑤8.已知反比例函數(shù)y=﹣的圖象上有三個點(x1,y1)、(x2,y2)、(x3,y3),若x1>x2>0>x3,則下列關系是正確的是()A.y1<y2<y3 B.y2<y1<y3 C.y3<y2<y1 D.y2<y3<y19.如圖在中,弦于點于點,若則的半徑的長為()A. B. C. D.10.如圖,和都是等腰直角三角形,,,的頂點在的斜邊上,、交于,若,,則的長為()A. B. C. D.11.小明家1至6月份的用水量統(tǒng)計如圖所示,關于這組數(shù)據(jù),下列說法錯誤的是().A.眾數(shù)是6噸 B.平均數(shù)是5噸 C.中位數(shù)是5噸 D.方差是12.如圖,在平面直角坐標系中,將△ABC向右平移3個單位長度后得△A1B1C1,再將△A1B1C1繞點O旋轉180°后得到△A2B2C2,則下列說法正確的是()A.A1的坐標為(3,1) B.S四邊形ABB1A1=3 C.B2C=2 D.∠AC2O=45°二、填空題(每題4分,共24分)13.如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠CDA=122°,則∠C=_______.14.從,0,,,1.6中隨機取一個數(shù),取到無理數(shù)的概率是__________.15.公元前3世紀,古希臘科學家阿基米德發(fā)現(xiàn)了杠桿平衡,后來人們把它歸納為“杠桿原理”,即:阻力×阻力臂=動力×動力臂.小偉欲用撬棍撬動一塊石頭,已知阻力和阻力臂分別是和,則動力(單位:)關于動力臂(單位:)的函數(shù)解析式為______.16.拋物線向右平移個單位,向上平移1個單位長度得到的拋物線解析式是_____17.若一個圓錐的側面展開圖是一個半徑為3cm,圓心角為120°的扇形,則該圓錐的底面半徑為__________cm.18.如圖,已知AD∥BC,AC和BD相交于點O,若△AOD的面積為2,△BOC的面積為18,BC=6,則AD的長為_____.三、解答題(共78分)19.(8分)如圖,AB為半圓O的直徑,點C在半圓上,過點O作BC的平行線交AC于點E,交過點A的直線于點D,且∠D=∠BAC(1)求證:AD是半圓O的切線;(2)求證:△ABC∽△DOA;(3)若BC=2,CE=,求AD的長.20.(8分)為促進新舊功能轉換,提高經(jīng)濟效益,某科技公司近期研發(fā)出一種新型高科技設備,每臺設備成本價為25萬元,經(jīng)過市場調研發(fā)現(xiàn),該設備的月銷售量(臺)和銷售單價(萬元)滿足如圖所示的一次函數(shù)關系.(1)求月銷售量與銷售單價的函數(shù)關系式;(2)根據(jù)相關規(guī)定,此設備的銷售單價不得高于35萬元,如果該公司想獲得130萬元的月利潤,那么該設備的銷售單價應是多少萬元?21.(8分)求下列各式的值:(1)2sin30°﹣3cos60°(2)16cos245°﹣.22.(10分)如圖,在正方形ABCD中,,點E為對角線AC上一動點(點E不與點A、C重合),連接DE,過點E作,交BC于點F,以DE、EF為鄰邊作矩形DEFG,連接CG.(1)求AC的長;(2)求證矩形DEFG是正方形;(3)探究:的值是否為定值?若是,請求出這個定值;若不是,請說明理由.23.(10分)學校為獎勵“漢字聽寫大賽”的優(yōu)秀學生,派王老師到商店購買某種獎品,他看到如表所示的關于該獎品的銷售信息,便用1400元買回了獎品,求王老師購買該獎品的件數(shù).購買件數(shù)銷售價格不超過30件單價40元超過30件每多買1件,購買的所有物品單價將降低0.5元,但單價不得低于30元24.(10分)如圖,已知矩形ABCD.在線段AD上作一點P,使∠DPC=∠BPC.(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)25.(12分)已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點,直線AB與y軸交于點C.(1)求反比例函數(shù)和一次函數(shù)的關系式;(2)求△AOC的面積;(3)求不等式kx+b-<0的解集(直接寫出答案).26.解方程:4x2﹣8x+3=1.
參考答案一、選擇題(每題4分,共48分)1、D【解題分析】∵△=>0,∴方程有兩個不相等的實數(shù)根.故選D.2、D【分析】根據(jù)二次函數(shù)圖像的平移法則進行推導即可.【題目詳解】解:將二次函數(shù)y=2x2+2的圖象先向左平移3個單位長度,再向下平移1個單位長度后所得新函數(shù)圖象的表達式為y=2(x+3)2+2﹣1,即y=2(x+3)2+1.故選:D.【題目點撥】本題考查了二次函數(shù)圖像的平移,掌握并靈活運用“上加下減,左加右減”的平移原則是解題的關鍵.3、D【分析】根據(jù)三角形的中點的概念求出AB、AC,根據(jù)三角形中位線定理求出DF、EF,計算得到答案.【題目詳解】解:∵點E是AC的中點,AB=AC,∴AB=AC=4,∵D是邊AB的中點,∴AD=2,∵D、F分別是邊、AB、BC的中點,∴DF=AC=2,同理,EF=2,∴四邊形ADFE的周長=AD+DF+FE+EA=8,故選:D.【題目點撥】本題考查的是三角形中位線定理,三角形的中位線平行于第三邊,且等于第三邊的一半.4、A【分析】根據(jù)圓內接四邊形的性質,構建方程解決問題即可.【題目詳解】設∠BAD=x,則∠BOD=2x,∵∠BCD=∠BOD=2x,∠BAD+∠BCD=180°,∴3x=180°,∴x=60°,∴∠BAD=60°.故選:A.【題目點撥】本題考查圓周角定理,圓內接四邊形的性質等知識,解題的關鍵是學會利用參數(shù)構建方程解決問題.5、C【分析】由AC是⊙的切線可得∠CAB=,又由,可得∠ABC=40;再由OD=OB,則∠BDO=40最后由∠AOD=∠OBD+∠OBD計算即可.【題目詳解】解:∵AC是⊙的切線∴∠CAB=,又∵∴∠ABC=-=40又∵OD=OB∴∠BDO=∠ABC=40又∵∠AOD=∠OBD+∠OBD∴∠AOD=40+40=80故答案為C.【題目點撥】本題考查了圓的切線的性質、等腰三角形以及三角形外角的概念.其中解題關鍵是運用圓的切線垂直于半徑的性質.6、C【解題分析】利用扇形的弧長公式可得扇形的弧長;根據(jù)扇形的弧長=圓錐的底面周長,讓扇形的弧長除以2π即為圓錐的底面半徑,利用勾股定理可得圓錐形筒的高:∵扇形的弧長=cm,圓錐的底面半徑為4π÷2π=2cm,∴這個圓錐形筒的高為cm.故選C.7、C【解題分析】根據(jù)同弧所對的圓周角等于它所對圓心角的一半,由圓周角∠ACB=45°得到圓心角∠BOD=90°,進而得到的度數(shù)為90°,故選項①正確;又因OD=OB,所以△BOD為等腰直角三角形,由∠A和∠ACB的度數(shù),利用三角形的內角和定理求出∠ABC=180°-60°-45°=75°,由AB與圓切線,根據(jù)切線的性質得到∠OBA為直角,求出∠CBO=∠OBA-∠ABC=90°-75°=15°,由根據(jù)∠BOE為直角,求出∠OEB=180°-∠BOD-∠OBE=180°-90°-15°=75°,根據(jù)內錯角相等,得到OD∥AB,故選項②正確;由D不一定為AC中點,即CD不一定等于AD,而選項③不一定成立;又由△OBD為等腰三角形,故∠ODB=45°,又∠ACB=45°,等量代換得到兩個角相等,又∠CBD為公共角,根據(jù)兩對對應角相等的兩三角形相似得到△BDE∽△BCD,故④正確;連接OC,由相似三角形性質和平行線的性質,得比例,由BD=OD,等量代換即可得到BE等=DE,故選項⑤正確.綜上,正確的結論有4個.
故選C.點睛:此題考查了相似三角形的判定與性質,圓周角定理,切線的性質,等腰直角三角形的性質以及等邊三角形的性質,熟練掌握性質與定理是解本題的關鍵.8、B【分析】根據(jù)函數(shù)的解析式得出圖象所在的象限和增減性,再進行比較即可.【題目詳解】解:∵反比例函數(shù)y=﹣,
∴函數(shù)圖象在第二、四象限,且在每個象限內,y隨x的增大而增大,
∵函數(shù)的圖象上有三個點(x1,y1),(x2,y2)、(x3,y3),且x1>x2>0>x3,
∴y2<y1<0,y3>0∴.y2<y1<y3
故選:B.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標特征和函數(shù)的圖象和性質,能靈活運用函數(shù)的圖象和性質進行推理是解此題的關鍵.9、C【分析】根據(jù)垂徑定理求得OD,AD的長,并且在直角△AOD中運用勾股定理即可求解.【題目詳解】解:弦,于點,于點,四邊形是矩形,,,,;故選:.【題目點撥】本題考查了垂徑定理、勾股定理、矩形的判定與性質;利用垂徑定理求出AD,AE的長是解決問題的關鍵.10、B【分析】連接BD,自F點分別作,交AD、BD于G、H點,通過證明,可得,根據(jù)勾股定理求出AB的長度,再根據(jù)角平分線的性質可得,根據(jù)三角形面積公式可得,代入中即可求出BF的值.【題目詳解】如圖,連接BD,自F點分別作,交AD、BD于G、H點∵和都是等腰直角三角形∴在△ECA和△DCB中在Rt△ADB中,∴DF是∠ADB的角平分線∵△ADF底邊AF上的高h與△BDF底邊BF上的高h相同故答案為:B.【題目點撥】本題考查了三角形的綜合問題,掌握等腰直角三角形的性質、全等三角形的性質以及判定定理、勾股定理、角平分線的性質、三角形面積公式是解題的關鍵.11、C【解題分析】試題分析:根據(jù)眾數(shù)、平均數(shù)、中位數(shù)、方差:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].數(shù)據(jù):3,4,5,6,6,6,中位數(shù)是5.5,故選C考點:1、方差;2、平均數(shù);3、中位數(shù);4、眾數(shù)12、D【解題分析】試題分析:如圖:A、A1的坐標為(1,3),故錯誤;B、=3×2=6,故錯誤;C、B2C==,故錯誤;D、變化后,C2的坐標為(-2,-2),而A(-2,3),由圖可知,∠AC2O=45°,故正確.故選D.二、填空題(每題4分,共24分)13、26°【分析】連接OD,如圖,根據(jù)切線的性質得∠ODC=90°,即可求得∠ODA=32°,再利用等腰三角形的性質得∠A=32°,然后根據(jù)三角形內角和定理計算即可.【題目詳解】連接OD,如圖,
∵CD與⊙O相切于點D,
∴OD⊥CD,
∴∠ODC=90°,
∴∠ODA=∠CDA-90°=122°-90°=32°,
∵OA=OD,
∴∠A=∠ODA=32°,
∴∠C=180°-∠ADC+∠A=180°-122°-32°=26°.
故答案為:.【題目點撥】本題考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.14、【分析】由題意可得共有5種等可能的結果,其中無理數(shù)有:,共2種情況,則可利用概率公式求解.【題目詳解】∵共有5種等可能的結果,無理數(shù)有:,共2種情況,∴取到無理數(shù)的概率是:.故答案為:.【題目點撥】此題考查了概率公式的應用與無理數(shù)的定義.此題比較簡單,注意用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.15、【分析】直接利用阻力×阻力臂=動力×動力臂,進而將已知量據(jù)代入得出函數(shù)關系式.【題目詳解】∵阻力×阻力臂=動力×動力臂.小偉欲用撬棍撬動一塊石頭,已知阻力和阻力臂分別是1200N和0.5m,∴動力F(單位:N)關于動力臂l(單位:m)的函數(shù)解析式為:1200×0.5=Fl,則.故答案為:.【題目點撥】此題主要考查了反比例函數(shù)的應用,正確讀懂題意得出關系式是解題關鍵.16、【分析】根據(jù)圖象的平移規(guī)律,可得答案.【題目詳解】解:將拋物線向右平移個單位,向上平移1個單位長度得到的拋物線的解析式是將拋物線,
故答案為:.【題目點撥】主要考查了函數(shù)圖象的平移,要求熟練掌握平移的規(guī)律:左加右減,上加下減.17、1【分析】(1)根據(jù),求出扇形弧長,即圓錐底面周長;(2)根據(jù),即,求圓錐底面半徑.【題目詳解】該圓錐的底面半徑=故答案為:1.【題目點撥】圓錐的側面展開圖是扇形,解題關鍵是理解扇形弧長就是圓錐底面周長.18、1【分析】根據(jù)AD∥BC得出△AOD∽△BOC,然后利用相似三角形的面積之比可求出相似比,再根據(jù)相似比即可求出AD的長度.【題目詳解】解:∵AD∥BC,∴△AOD∽△BOC,∵△AOD的面積為1,△BOC的面積為18,∴△AOD與△BOC的面積之比為1:9,∴,∵BC=6,∴AD=1.故答案為:1.【題目點撥】本題主要考查相似三角形的性質,掌握相似三角形的性質是解題的關鍵.三、解答題(共78分)19、(1)見解析;(2)見解析;(3)【分析】(1)要證AD是半圓O的切線只要證明∠DAO=90°即可;(2)根據(jù)兩組角對應相等的兩個三角形相似即可得證;(3)先求出AC、AB、AO的長,由第(2)問的結論△ABC∽△DOA,根據(jù)相似三角形的性質:對應邊成比例可得到AD的長.【題目詳解】(1)證明:∵AB為直徑,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=∠ACB=90°,∴∠AOD+∠BAC=90°,又∵∠D=∠BAC,∴∠AOD+∠D=90°,∴∠OAD=90°,∴AD⊥OA,∴AD是半圓O的切線;(2)證明:由(1)得∠ACB=∠OAD=90°,又∵∠D=∠BAC,∴△ABC∽△DOA;(3)解:∵O為AB中點,OD∥BC,∴OE是△ABC的中位線,則E為AC中點,∴AC=2CE,∵BC=2,CE=,∴AC=∴AB=,∴OA=AB=,由(2)得:△ABC∽△DOA,∴,∴,∴.【題目點撥】本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.同時考查了相似三角形的判定與性質,難度適中.20、(1)與的函數(shù)關系式為;(2)該設備的銷售單價應是27萬元.【分析】(1)根據(jù)圖像上點坐標,代入,用待定系數(shù)法求出即可.(2)根據(jù)總利潤=單個利潤銷售量列出方程即可.【題目詳解】解:(1)設與的函數(shù)關系式為,依題意,得解得所以與的函數(shù)關系式為.(2)依題知.整理方程,得.解得.∵此設備的銷售單價不得高于35萬元,∴(舍),所以.答:該設備的銷售單價應是27萬元.【題目點撥】本題考查了一次函數(shù)以及一元二次方程的應用.21、(1);(2).【分析】(1)直接把特殊角的三角函數(shù)值代入求出答案;(2)直接把特殊角的三角函數(shù)值代入求出答案.【題目詳解】(1)2sin30﹣3cos60=2×﹣3×=1﹣=﹣;(2)16cos245﹣tan260=16×()2﹣×()2=8﹣=.【題目點撥】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關數(shù)據(jù)是解題關鍵.22、(1)2;(2)見解析;(3)是,定值為8【分析】(1)運用勾股定理直接計算即可;(2)過作于點,過作于點,即可得到,然后判斷,得到,則有即可;(3)同(2)的方法證出得到,得出即可.【題目詳解】解:(1),∴AC的長為2;(2)如圖所示,過作于點,過作于點,正方形,,,,且,四邊形為正方形,四邊形是矩形,,,,又,在和中,,,,矩形為正方形,(3)的值為定值,理由如下:矩形為正方形,,,四邊形是正方形,,,,在和中,,,,,是定值.【題目點撥】此題是四邊形綜合題,主要考查了正方形的性質,矩形的性質與判定,三角形的全等的性質和判定,勾股定理的綜合運用,解本題的關鍵是作出輔助線,構造三角形全等,利用全等三角形的對應邊相等得出結論。23、王老師購買該獎品的件數(shù)為40件.【解題分析】試題分析:根據(jù)題意首先表示出每件商品的價格,進而得出購買商品的總錢數(shù),進而得出等式求出答案.試題解析:∵30×40=1200<1400,∴獎品數(shù)超過了30件,設總數(shù)為x件,則每件商品的價格為:[40﹣(x﹣30)×0.5]元,根據(jù)題意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70時,40﹣(70﹣30)×0.5=20<30,∴x=70不合題意舍去,答:王老師購買該獎品的件數(shù)為40件.考點:一元二次方程的應用.24、詳見解析【分析】以為圓心,為半徑畫弧,以為直徑
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 威海市古寨中學2025屆初三下學期期終調研測試(一模)物理試題試卷含解析
- 河北省唐山市路北區(qū)達標名校2024-2025學年下學期學業(yè)水平監(jiān)測期末聯(lián)考初三生物試題含解析
- 昆明醫(yī)科大學海源學院《高級生物統(tǒng)計與實踐》2023-2024學年第二學期期末試卷
- 西北民族大學《通信電子電路》2023-2024學年第二學期期末試卷
- 農(nóng)保服務工作 (廣東梅州)
- 玻璃制品光學鍍膜材料研究考核試卷
- 石棉水泥制品生產(chǎn)自動化控制系統(tǒng)考核試卷
- 環(huán)境友好型設計考核試卷
- 電影道具設計中的功能性與美觀性平衡考核試卷
- 電動工具在飛機維修領域的效率改進考核試卷
- 新教科版五下科學2.2《用浮的材料造船》課件
- 最新個人簡歷模板封面可直接下載使用(word版)
- 《分散系》說播課課件(全國高中化學優(yōu)質課大賽獲獎案例)
- 軟件驗證報告模板參考(完整版)資料
- 雜質研究課件
- 輸液港的植入和并發(fā)癥處理課件
- 世界史知識點總結
- 公司IPQC巡檢記錄表
- 施工現(xiàn)場建筑垃圾處置專項方案
- 環(huán)形鍛件的軋制過程的基本原理和工藝流程
- 超細干粉滅火系統(tǒng)施工質量記錄表格
評論
0/150
提交評論