初中教案設(shè)計(jì)數(shù)學(xué)教案(7篇)_第1頁
初中教案設(shè)計(jì)數(shù)學(xué)教案(7篇)_第2頁
初中教案設(shè)計(jì)數(shù)學(xué)教案(7篇)_第3頁
初中教案設(shè)計(jì)數(shù)學(xué)教案(7篇)_第4頁
初中教案設(shè)計(jì)數(shù)學(xué)教案(7篇)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第初中教案設(shè)計(jì)數(shù)學(xué)教案(7篇)初中教案設(shè)計(jì)數(shù)學(xué)教案(精選7篇)

初中教案設(shè)計(jì)數(shù)學(xué)教案要怎么寫,才更標(biāo)準(zhǔn)規(guī)范?根據(jù)多年的文秘寫作經(jīng)驗(yàn),參考優(yōu)秀的初中教案設(shè)計(jì)數(shù)學(xué)教案樣本能讓你事半功倍,下面分享【初中教案設(shè)計(jì)數(shù)學(xué)教案(精選7篇)】,供你選擇借鑒。

初中教案設(shè)計(jì)數(shù)學(xué)教案篇1

課題名稱:完全平方公式(1)

一、內(nèi)容簡介

本節(jié)課的主題:通過一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。

關(guān)鍵信息:

1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問題,對(duì)可能的答案做出假設(shè)與猜想,并通過多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。

2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。

二、學(xué)習(xí)者分析:

1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:

①同類項(xiàng)的定義。

②合并同類項(xiàng)法則

③多項(xiàng)式乘以多項(xiàng)式法則。

2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

三、教學(xué)/學(xué)習(xí)目標(biāo)及其對(duì)應(yīng)的課程標(biāo)準(zhǔn):

(一)教學(xué)目標(biāo):

1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號(hào)感和推力能力。

2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算。

(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過程,認(rèn)識(shí)有理

數(shù)、實(shí)數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。

(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同

角度尋求解決問題的方法,并能有效地解決問題,嘗試評(píng)價(jià)不同方法之間的差異;通過對(duì)解決問題過程的反思,獲得解決問題的經(jīng)驗(yàn)。

(五)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難

和運(yùn)用知識(shí)解決問題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

四、教育理念和教學(xué)方式:

1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動(dòng)的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

教學(xué)是師生交往、積極互動(dòng)、共同發(fā)展的過程。當(dāng)學(xué)生迷路的時(shí)

候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時(shí)候,教師不是拖著他走,而是喚起他內(nèi)在的精神動(dòng)力,鼓勵(lì)他不斷向上攀登。

2、采用“問題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式

展開教學(xué)。

3、教學(xué)評(píng)價(jià)方式:

(1)通過課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動(dòng)中的主

動(dòng)參與程度與合作交流意識(shí),及時(shí)給與鼓勵(lì)、強(qiáng)化、指導(dǎo)和矯正。

(2)通過判斷和舉例,給學(xué)生更多機(jī)會(huì),在自然放松的狀態(tài)下,

揭示思維過程和反饋知識(shí)與技能的掌握情況,使老師可以及時(shí)診斷學(xué)情,調(diào)查教學(xué)。

(3)通過課后訪談和作業(yè)分析,及時(shí)查漏補(bǔ)缺,確保達(dá)到預(yù)期的

教學(xué)效果。

五、教學(xué)媒體:多媒體六、教學(xué)和活動(dòng)過程:

教學(xué)過程設(shè)計(jì)如下:

〈一〉、提出問題

[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析問題

1、[學(xué)生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特點(diǎn)。

(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。

(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。

(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。

2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運(yùn)用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判斷:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、小試牛刀

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[學(xué)生小結(jié)]

你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題

(1)公式右邊共有3項(xiàng)。

(2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。

(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。

(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。

〈五〉、冒險(xiǎn)島:

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

〈六〉、學(xué)生自我評(píng)價(jià)

[小結(jié)]通過本節(jié)課的學(xué)習(xí),你有什么收獲和感悟

本節(jié)課,我們自己通過計(jì)算、分析結(jié)果,總結(jié)出了完全平方公式。在知識(shí)探索的過程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步。

〈七〉[作業(yè)]P34隨堂練習(xí)P36習(xí)題

初中教案設(shè)計(jì)數(shù)學(xué)教案篇2

教學(xué)目標(biāo)

1、使學(xué)生能說出有理數(shù)大小的比較法則

2、能熟練運(yùn)用法則結(jié)合數(shù)軸比較有理數(shù)的大小,特別是應(yīng)用絕對(duì)值概念比較兩個(gè)負(fù)數(shù)的大小,能利用數(shù)軸對(duì)多個(gè)有理數(shù)進(jìn)行有序排列。

3、能正確運(yùn)用符號(hào)∵∴寫出表示推理過程中簡單的因果關(guān)系。

三、教學(xué)重點(diǎn)與難點(diǎn)

重點(diǎn):運(yùn)用法則借助數(shù)軸比較兩個(gè)有理數(shù)的大小。

難點(diǎn):利用絕對(duì)值概念比較兩個(gè)負(fù)分?jǐn)?shù)的大小。

四、教學(xué)準(zhǔn)備

多媒體課件

五、教學(xué)設(shè)計(jì)

(一)交流對(duì)話,探究新知

1、說一說

(多媒體顯示)某一天我們5個(gè)城市的最低氣溫從剛才的圖片中你獲得了哪些信息(從常見的氣溫入手,激發(fā)學(xué)生的求知欲望,可能有些學(xué)生會(huì)說從中知道廣州的最低氣溫10℃比上海的最低氣溫0℃高,有些學(xué)生會(huì)說哈爾濱的最低氣溫零下20℃比北京的最低氣溫零下10℃低等;不會(huì)說的,老師適當(dāng)點(diǎn)拔,從而學(xué)生在合作交流中不知不覺地完成了以下填空。

比較這一天下列兩個(gè)城市間最低氣溫的高低(填高于或低于)

廣州_______上海;北京________上海;北京________哈爾濱;武漢________哈爾濱;武漢__________廣州。

2、畫一畫:(1)把上述5個(gè)城市最低氣溫的數(shù)表示在數(shù)軸上,(2)觀察這5個(gè)數(shù)在數(shù)軸上的位置,從中你發(fā)現(xiàn)了什么

(3)溫度的高低與相應(yīng)的數(shù)在數(shù)軸上的位置有什么

(通過學(xué)生自己動(dòng)手操作,觀察、思考,發(fā)現(xiàn)原點(diǎn)左邊的數(shù)都是負(fù)數(shù),原點(diǎn)右邊的數(shù)都是正數(shù);同時(shí)也發(fā)現(xiàn)5在0右邊,5比0大;10在5右邊,10比5大,初步感受在數(shù)軸上原點(diǎn)右邊的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。教師趁機(jī)追問,原點(diǎn)左邊的數(shù)也有這樣的規(guī)律嗎從而激發(fā)學(xué)生探索知識(shí)的欲望,進(jìn)一步驗(yàn)證了原點(diǎn)左邊的數(shù)也有這樣的規(guī)律。從而使學(xué)生親身體驗(yàn)探索的樂趣,在探究中不知不覺獲得了知識(shí)。)由小組討論后,教師歸納得出結(jié)論:

在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。

正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。

(二)應(yīng)用新知,體驗(yàn)成功

1、練一練(師生共同完成例1后,學(xué)生完成隨堂練習(xí)1)

例1:在數(shù)軸上表示數(shù)5,0,-4,-1,并比較它們的大小,將它們按從小到大的順序用號(hào)連接。(師生共同完成)

分析:本題意有幾層含義應(yīng)分幾步

要點(diǎn)總結(jié):小組討論歸納,本題解題時(shí)的一般步驟:①畫數(shù)軸②描點(diǎn);③有序排列;④不等號(hào)連接。

隨堂練習(xí):P19T1

2、做一做

(1)在數(shù)軸上表示下列各對(duì)數(shù),并比較它們的大小

①2和7②-6和-1③-6和-36④-和-1.5

(2)求出圖中各對(duì)數(shù)的絕對(duì)值,并比較它們的大小。

(3)由①、②從中你發(fā)現(xiàn)了什么

(學(xué)生小組討論后,代表站起來發(fā)言,口述自己組的發(fā)現(xiàn),說明自己組發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生觀察、歸納、用數(shù)學(xué)語言表達(dá)數(shù)學(xué)規(guī)律的能力。)

要點(diǎn)總結(jié):兩個(gè)正數(shù)比較大小,絕對(duì)值大的數(shù)大;兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的數(shù)反而小。

在學(xué)生討論的基礎(chǔ)上,由學(xué)生總結(jié)得出有理數(shù)大小的比較法則。

(1)正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。

(2)兩個(gè)正數(shù)比較大小,絕對(duì)值大的數(shù)大。

(3)兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的數(shù)反而小。

3、師生共同完成例2后,學(xué)生完成隨堂練習(xí)2、3、4。

例2比較下列每對(duì)數(shù)的大小,并說明理由:(師生共同完成)

(1)1與-10,(2)-0.001與0,(3)-8與+2;(4)-與-;(5)-(+)與-|-0.8|

分析:第(4)(5)題較難,第(4)題應(yīng)先通分,第(5)題應(yīng)先化簡,再比較。同時(shí)在講解時(shí),要注意格式。

注:絕對(duì)值比較時(shí),分母相同,分子大的數(shù)大;分子相同,則分母大的數(shù)反而小;分子分母都不相同時(shí),則應(yīng)先通分再比較,或把分子化相同再比較。

兩個(gè)負(fù)數(shù)比較大小時(shí)的一般步驟:①求絕對(duì)值;②比較絕對(duì)值的大小;③比較負(fù)數(shù)的大小。

思考:還有別的方法嗎(分組討論,積極思考)

4、想一想:我們有幾種方法來判斷有理數(shù)的大小你認(rèn)為它們各有什么特點(diǎn)

由學(xué)生討論后,得出比較有理數(shù)的大小共有兩種方法,一種是法則,另一種是利用數(shù)軸,當(dāng)兩個(gè)數(shù)比較時(shí)一般選用第一種,當(dāng)多個(gè)有理數(shù)比較大小時(shí),一般選用第二種較好。

練一練:P19T2、3、4

5、考考你:請(qǐng)你回答下列問題:

(1)有沒有的有理數(shù),有沒有最小的有理數(shù),為什么

(2)有沒有絕對(duì)值最小的有理數(shù)若有,請(qǐng)把它寫出來

(3)在于-1.5且小于4.2的整數(shù)有_____個(gè),它們分別是____。

(4)若a0,b0,a|b|,則你能比較a、b、-a、-b這四個(gè)數(shù)的大小嗎(本題屬提高題,不要求全體學(xué)生掌握)

(新穎的問題會(huì)激發(fā)學(xué)生的好奇心,通過合作交流,自主探究等活動(dòng),培養(yǎng)學(xué)生思維的習(xí)慣和數(shù)學(xué)語言的表達(dá)能力)

6、議一議,談?wù)劚竟?jié)課你有哪些收獲

(由師生共同完成本節(jié)課的小結(jié))本節(jié)課主要學(xué)習(xí)了有理數(shù)大小比較的兩種方法,一種是按照法則,兩兩比較,另一種是利用數(shù)軸,運(yùn)用這種方法時(shí),首先必須把要比較的數(shù)在數(shù)軸上表示出來,然后按照它們?cè)跀?shù)軸上的位置,從左到右(或從右到左)用(或)連接,這種方法在比較多個(gè)有理數(shù)大小時(shí)非常簡便。

六、布置作業(yè):P19A組、B組

基礎(chǔ)好的A、B兩組都做

基礎(chǔ)較差的同學(xué)選做A組。

初中教案設(shè)計(jì)數(shù)學(xué)教案篇3

一、教學(xué)目標(biāo):

1、知道一次函數(shù)與正比例函數(shù)的定義。

2、理解掌握一次函數(shù)的圖象的特征和相關(guān)的性質(zhì)。

3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系。

4、掌握直線的平移法則簡單應(yīng)用。

5、能應(yīng)用本章的基礎(chǔ)知識(shí)熟練地解決數(shù)學(xué)問題。

二、教學(xué)重、難點(diǎn):

重點(diǎn):初步構(gòu)建比較系統(tǒng)的函數(shù)知識(shí)體系。

難點(diǎn):對(duì)直線的平移法則的理解,體會(huì)數(shù)形結(jié)合思想。

三、教學(xué)過程:

1、一次函數(shù)與正比例函數(shù)的定義:

一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù)。

正比例函數(shù):對(duì)于y=kx+b,當(dāng)b=0,k≠0時(shí),有y=kx,此時(shí)稱y是x的正比例函數(shù),k為正比例系數(shù)。

2、一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:

(1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。

(2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過原點(diǎn)(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過點(diǎn)(0,b)且與y=kx

平行的一條直線。

基礎(chǔ)訓(xùn)練:

1、寫出一個(gè)圖象經(jīng)過點(diǎn)(1,—3)的函數(shù)解析式為:

2、直線y=—2X—2不經(jīng)過第象限,y隨x的增大而。

3、如果P(2,k)在直線y=2x+2上,那么點(diǎn)P到x軸的距離是:

4、已知正比例函數(shù)y=(3k—1)x,,若y隨x的增大而增大,則k是:

5、過點(diǎn)(0,2)且與直線y=3x平行的直線是:

6、若正比例函數(shù)y=(1—2m)x的圖像過點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)當(dāng)x1<x2時(shí),y1>y2,則m的取值范圍是:

7、若y—2與x—2成正比例,當(dāng)x=—2時(shí),y=4,則x=時(shí),y=—4。

8、直線y=—5x+b與直線y=x—3都交y軸上同一點(diǎn),則b的值為。

9、已知圓O的半徑為1,過點(diǎn)A(2,0)的直線切圓O于點(diǎn)B,交y軸于點(diǎn)C。

(1)求線段AB的長。

(2)求直線AC的解析式。

初中教案設(shè)計(jì)數(shù)學(xué)教案篇4

教學(xué)目的

1.使學(xué)生熟練地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。

2.熟識(shí)等邊三角形的性質(zhì)及判定.

2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。

教學(xué)重點(diǎn):等腰三角形的性質(zhì)及其應(yīng)用。

教學(xué)難點(diǎn):簡潔的邏輯推理。

教學(xué)過程

一、復(fù)習(xí)鞏固

1.敘述等腰三角形的性質(zhì),它是怎么得到的

等腰三角形的兩個(gè)底角相等,也可以簡稱“等邊對(duì)等角”。把等腰三角形對(duì)折,折疊兩部分是互相重合的,即AB與AC重合,點(diǎn)B與點(diǎn)C重合,線段BD與CD也重合,所以∠B=∠C。

等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于AD為等腰三角形的對(duì)稱軸,所以BD=CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。

2.若等腰三角形的兩邊長為3和4,則其周長為多少

二、新課

在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時(shí),三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

等邊三角形具有什么性質(zhì)呢

1.請(qǐng)同學(xué)們畫一個(gè)等邊三角形,用量角器量出各個(gè)內(nèi)角的度數(shù),并提出猜想。

2.你能否用已知的知識(shí),通過推理得到你的猜想是正確的

等邊三角形是特殊的等腰三角形,由等腰三角形等邊對(duì)等角的性質(zhì)得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。

3.上面的條件和結(jié)論如何敘述

等邊三角形的各角都相等,并且每一個(gè)角都等于60°。

等邊三角形是軸對(duì)稱圖形嗎如果是,有幾條對(duì)稱軸

等邊三角形也稱為正三角形。

例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),∠B=30°,求∠1和∠ADC的度數(shù)。

分析:由AB=AC,D為BC的中點(diǎn),可知AB為BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

問題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果是否一樣

問題2:求∠1是否還有其它方法

三、練習(xí)鞏固

1.判斷下列命題,對(duì)的打“√”,錯(cuò)的打“×”。

a.等腰三角形的角平分線,中線和高互相重合()

b.有一個(gè)角是60°的等腰三角形,其它兩個(gè)內(nèi)角也為60°()

2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數(shù)。

3.P54練習(xí)1、2。

四、小結(jié)

由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60°。“三線合一”性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個(gè)結(jié)論成立,其他兩個(gè)結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個(gè)結(jié)論成立的條件。

五、作業(yè):1.課本P57第7,9題。

2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數(shù)。

12.3.2等邊三角形(二)

教學(xué)目標(biāo)

1.掌握等邊三角形的性質(zhì)和判定方法.2.培養(yǎng)分析問題、解決問題的能力.

教學(xué)重點(diǎn):等邊三角形的性質(zhì)和判定方法.

教學(xué)難點(diǎn):等邊三角形性質(zhì)的應(yīng)用

教學(xué)過程

I創(chuàng)設(shè)情境,提出問題

回顧上節(jié)課講過的等邊三角形的有關(guān)知識(shí)

1.等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸.

2.等邊三角形每一個(gè)角相等,都等于60°

3.三個(gè)角都相等的三角形是等邊三角形.

4.有一個(gè)角是60°的等腰三角形是等邊三角形.

其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.

II例題與練習(xí)

1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么

①在邊AB、AC上分別截取AD=AE.

②作∠ADE=60°,D、E分別在邊AB、AC上.

③過邊AB上D點(diǎn)作DE∥BC,交邊AC于E點(diǎn).

2.已知:如右圖,P、Q是△ABC的邊BC上的兩點(diǎn),,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知顯然可知三角形APQ是等邊三角形,每個(gè)角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.

3.P56頁練習(xí)1、2

III課堂小結(jié):1.等腰三角形和性質(zhì);等腰三角形的條件

V布置作業(yè):1.P58頁習(xí)題12.3第ll題.

2.已知等邊△ABC,求平面內(nèi)一點(diǎn)P,滿足A,B,C,P四點(diǎn)中的任意三點(diǎn)連線都構(gòu)成等腰三角形.這樣的點(diǎn)有多少個(gè)

12.3.2等邊三角形(三)

教學(xué)過程

一、復(fù)習(xí)等腰三角形的判定與性質(zhì)

二、新授:

1.等邊三角形的性質(zhì):三邊相等;三角都是60°;三邊上的中線、高、角平分線相等

2.等邊三角形的判定:

三個(gè)角都相等的三角形是等邊三角形;有一個(gè)角是60°的等腰三角形是等邊三角形;

在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半

注意:推論1是判定一個(gè)三角形為等邊三角形的一個(gè)重要方法.推論2說明在等腰三角形中,只要有一個(gè)角是600,不論這個(gè)角是頂角還是底角,就可以判定這個(gè)三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關(guān)系.

3.由學(xué)生解答課本148頁的例子;

4.補(bǔ)充:已知如圖所示,在△ABC中,BD是AC邊上的中線,DB⊥BC于B,

∠ABC=120o,求證:AB=2BC

分析由已知條件可得∠ABD=30o,如能構(gòu)造有一個(gè)銳角是30o的直角三角形,斜邊是AB,30o角所對(duì)的邊是與BC相等的線段,問題就得到解決了.

初中教案設(shè)計(jì)數(shù)學(xué)教案篇5

學(xué)習(xí)目標(biāo)

1.理解三線八角中沒有公共頂點(diǎn)的角的位置關(guān)系,知道什么是同位角、內(nèi)錯(cuò)角、同旁內(nèi)角.毛

2.通過比較、觀察、掌握同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的特征,能正確識(shí)別圖形中的同位角、內(nèi)錯(cuò)角和同旁內(nèi)角.

重點(diǎn)難點(diǎn)

同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的特征

教學(xué)過程

一·導(dǎo)入

1.指出右圖中所有的鄰補(bǔ)角和對(duì)頂角

2.圖中的∠1與∠5,∠3與∠5,∠3與∠6是鄰補(bǔ)角或?qū)斀菃?/p>

若都不是,請(qǐng)自學(xué)課本P6內(nèi)容后回答它們各是什么關(guān)系的角

二·問題導(dǎo)學(xué)

1.如圖⑴,將木條,與木條c釘在一起,若把它們看成三條直線則該圖可說成直線和直線與直線相交也可以說成兩條直線,被第三條直線所截.構(gòu)成了小于平角的角共有個(gè),通常將這種圖形稱作為三線八角。其中直線,稱為兩被截線,直線稱為截線。

2.如圖⑶是直線,被直線所截形成的圖形

(1)∠1與∠5這對(duì)角在兩被截線AB,CD的,在截線EF的,形如字型.具有這種關(guān)系的一對(duì)角叫同位角。

(2)∠3與∠5這對(duì)角在兩被截線AB,CD的,在截線EF的,形如字型.具有這種關(guān)系的一對(duì)角叫內(nèi)錯(cuò)角。

(3)∠3與∠6這對(duì)角在兩被截線AB,CD的,在截線EF的,形如字型.具有這種關(guān)系的一對(duì)角叫同旁內(nèi)角。

3.找出圖⑶中所有的同位角、內(nèi)錯(cuò)角、同旁內(nèi)角

4.討論與交流:

(1)同位角、內(nèi)錯(cuò)角、同旁內(nèi)角與鄰補(bǔ)角、對(duì)頂角在識(shí)別方法上有什么區(qū)別

(2)歸納總結(jié)同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的特征:

同位角:F字型,同旁同側(cè)

三線八角內(nèi)錯(cuò)角:Z字型,之間兩側(cè)

同旁內(nèi)角:U字型,之間同側(cè)

三·典題訓(xùn)練

例1.如圖⑵中∠1與∠2,∠3與∠4,∠1與∠4分別是哪兩條直線被哪一條直線所截形成的什么角

小結(jié)將左右手的大拇指和食指各組成一個(gè)角,兩食指相對(duì)成一條直線,兩個(gè)大拇指反向的時(shí)候,組成內(nèi)錯(cuò)角;

兩食指相對(duì)成一條直線,兩個(gè)大拇指同向的時(shí)候,組成同旁內(nèi)角;

自我檢測(cè)

⒈如圖⑷,下列說法不正確的是()

A、∠1與∠2是同位角B、∠2與∠3是同位角

C、∠1與∠3是同位角D、∠1與∠4不是同位角

⒉如圖⑸,直線AB、CD被直線EF所截,∠A和是同位角,∠A和是內(nèi)錯(cuò)角,∠A和是同旁內(nèi)角.

⒊如圖⑹,直線DE截AB,AC,構(gòu)成八個(gè)角:

①指出圖中所有的同位角、內(nèi)錯(cuò)角、同旁內(nèi)角.

②∠A與∠5,∠A與∠6,∠A與∠8,分別是哪一條直線截哪兩條直線而成的什么角

⒋如圖⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D.

①指出當(dāng)BC、DE被AB所截時(shí),∠3的同位角、內(nèi)錯(cuò)角和同旁內(nèi)角.

②試說明∠1=∠2=∠3的理由.(提示:三角形內(nèi)角和是1800)

相交線與平行線練習(xí)

課型:復(fù)習(xí)課:備課人:徐新齊審核人:霍紅超

一.基礎(chǔ)知識(shí)填空

1、如圖,∵AB⊥CD(已知)

∴∠BOC=90°()

2、如圖,∵∠AOC=90°(已知)

∴AB⊥CD()

3、∵a∥b,a∥c(已知)

∴b∥c()

4、∵a⊥b,a⊥c(已知)

∴b∥c()

5、如圖,∵∠D=∠DCF(已知)

∴_____//______()

6、如圖,∵∠D+∠BAD=180°(已知)

∴_____//______()

(第1、2題)(第5、6題)(第7題)(第9題)

7、如圖,∵∠2=∠3()

∠1=∠2(已知)

∴∠1=∠3()

∴CD____EF()

8、∵∠1+∠2=180°,∠2+∠3=180°(已知)

∴∠1=∠3()

9、∵a//b(已知)

∴∠1=∠2()

∠2=∠3()

∠2+∠4=180°()

10.如圖,CD⊥AB于D,E是BC上一點(diǎn),EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

二.基礎(chǔ)過關(guān)題:

1、如圖:已知∠A=∠F,∠C=∠D,求證:BD∥CE。

證明:∵∠A=∠F(已知)

∴AC∥DF()

∴∠D=∠()

又∵∠C=∠D(已知),

∴∠1=∠C(等量代換)

∴BD∥CE()。

2、如圖:已知∠B=∠BGD,∠DGF=∠F,求證:∠B+∠F=180°。

證明:∵∠B=∠BGD(已知)

∴AB∥CD()

∵∠DGF=∠F;(已知)

∴CD∥EF()

∵AB∥EF()

∴∠B+∠F=180°()。

3、如圖,已知AB∥CD,EF交AB,CD于G、H,GM、HN分別平分∠AGF,∠EHD,試說明GM∥HN.

初中教案設(shè)計(jì)數(shù)學(xué)教案篇6

一、教學(xué)目標(biāo):

1、理解二元一次方程及二元一次方程的解的概念;

2、學(xué)會(huì)求出某二元一次方程的幾個(gè)解和檢驗(yàn)?zāi)硨?duì)數(shù)值是否為二元一次方程的解;

3、學(xué)會(huì)把二元一次方程中的一個(gè)未知數(shù)用另一個(gè)未知數(shù)的一次式來表示;

4、在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。

二、教學(xué)重點(diǎn)、難點(diǎn):

重點(diǎn):二元一次方程的意義及二元一次方程的解的概念。

難點(diǎn):把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程。

三、教學(xué)方法與教學(xué)手段:

通過與一元一次方程的比較,加強(qiáng)學(xué)生的類比的思想方法;通過“合作學(xué)習(xí)”,使學(xué)生認(rèn)識(shí)數(shù)學(xué)是根據(jù)實(shí)際的需要而產(chǎn)生發(fā)展的觀點(diǎn)。

四、教學(xué)過程:

1、情景導(dǎo)入:

新聞鏈接:x70歲以上老人可領(lǐng)取生活補(bǔ)助。

得到方程:80a+150b=902880、

2、新課教學(xué):

引導(dǎo)學(xué)生觀察方程80a+150b=902880與一元一次方程有異同?

得出二元一次方程的概念:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1次的方程叫做二元一次方程。

做一做:

(1)根據(jù)題意列出方程:

①小明去看望奶奶,買了5kg蘋果和3kg梨共花去23元,分別求蘋果和梨的單價(jià)、設(shè)蘋果的單價(jià)x元/kg,梨的單價(jià)y元/kg;

②在高速公路上,一輛轎車行駛2時(shí)的路程比一輛卡車行駛3時(shí)的路程還多20千米,如果設(shè)轎車的速度是a千米/小時(shí),卡車的速度是b千米/小時(shí),可得方程:

(2)課本P80練習(xí)2、判定哪些式子是二元一次方程方程。

合作學(xué)習(xí):

活動(dòng)背景愛心滿人間——記求是中學(xué)“學(xué)雷鋒、關(guān)愛老人”志愿者活動(dòng)。

問題:參加活動(dòng)的36名志愿者,分為勞動(dòng)組和文藝組,其中勞動(dòng)組每組3人,文藝組每組6人、團(tuán)支書擬安排8個(gè)勞動(dòng)組,2個(gè)文藝組,單從人數(shù)上考慮,此方案是否可行?為什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等?由學(xué)生檢驗(yàn)得出代入方程后,能使方程兩邊相等、得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的一對(duì)未知數(shù)的值叫做二元一次方程的一個(gè)解。

并提出注意二元一次方程解的書寫方法。

3、合作學(xué)習(xí):

給定方程x+2y=8,男同學(xué)給出y(x取絕對(duì)值小于10的整數(shù))的值,女同學(xué)馬上給出對(duì)應(yīng)的x的值;接下來男女同學(xué)互換、(比一比哪位同學(xué)反應(yīng)快)請(qǐng)算的最快最準(zhǔn)確的同學(xué)講他的計(jì)算方法、提問:給出x的值,計(jì)算y的值時(shí),y的系數(shù)為多少時(shí),計(jì)算y最為簡便?

出示例題:已知二元一次方程x+2y=8。

(1)用關(guān)于y的代數(shù)式表示x;

(2)用關(guān)于x的代數(shù)式表示y;

(3)求當(dāng)x=2,0,—3時(shí),對(duì)應(yīng)的y的值,并寫出方程x+2y=8的三個(gè)解。

(當(dāng)用含x的一次式來表示y后,再請(qǐng)同學(xué)做游戲,讓同學(xué)體會(huì)一下計(jì)算的速度是否要快)

4、課堂練習(xí):

(1)已知:5xm—2yn=4是二元一次方程,則m+n=;

(2)二元一次方程2x—y=3中,方程可變形為y=當(dāng)x=2時(shí),y=;

5、你能解決嗎?

小紅到郵局給遠(yuǎn)在農(nóng)村的爺爺寄掛號(hào)信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?說說你的方案。

6、課堂小結(jié):

(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);

(2)二元一次方程解的不定性和相關(guān)性;

(3)會(huì)把二元一次方程化為用一個(gè)未知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論