![07 衡水中學(xué)高三數(shù)學(xué)一輪復(fù)習(xí)資料-立體幾何_第1頁(yè)](http://file4.renrendoc.com/view/fcefb63acefad6faca09eb9e126a1d09/fcefb63acefad6faca09eb9e126a1d091.gif)
![07 衡水中學(xué)高三數(shù)學(xué)一輪復(fù)習(xí)資料-立體幾何_第2頁(yè)](http://file4.renrendoc.com/view/fcefb63acefad6faca09eb9e126a1d09/fcefb63acefad6faca09eb9e126a1d092.gif)
![07 衡水中學(xué)高三數(shù)學(xué)一輪復(fù)習(xí)資料-立體幾何_第3頁(yè)](http://file4.renrendoc.com/view/fcefb63acefad6faca09eb9e126a1d09/fcefb63acefad6faca09eb9e126a1d093.gif)
![07 衡水中學(xué)高三數(shù)學(xué)一輪復(fù)習(xí)資料-立體幾何_第4頁(yè)](http://file4.renrendoc.com/view/fcefb63acefad6faca09eb9e126a1d09/fcefb63acefad6faca09eb9e126a1d094.gif)
![07 衡水中學(xué)高三數(shù)學(xué)一輪復(fù)習(xí)資料-立體幾何_第5頁(yè)](http://file4.renrendoc.com/view/fcefb63acefad6faca09eb9e126a1d09/fcefb63acefad6faca09eb9e126a1d095.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
衡水中學(xué)高三數(shù)學(xué)一輪復(fù)習(xí)資料——立體幾何考試內(nèi)容平面及其基本性質(zhì).平面圖形直觀圖的畫法.
平行直線.對(duì)應(yīng)邊分別平行的角.異面直線所成的角.異面直線的公垂線.異面直線的距離.
直線和平面平行的判定與性質(zhì).直線和平面垂直的判定與性質(zhì).點(diǎn)到平面的距離.斜線在平面上的射影.直線和平面所成的角.三垂線定理及其逆定理.
平行平面的判定與性質(zhì).平行平面間的距離.二面角及其平面角.兩個(gè)平面垂直的判定與性質(zhì).
多面體.正多面體.棱柱.棱錐.球.
考試要求
(1)掌握平面的基本性質(zhì),會(huì)用斜二測(cè)的畫法畫水平放置的平面圖形的直觀圖;能夠畫出空間兩條直線、直線和平面的各種位置關(guān)系的圖形,能夠根據(jù)圖形想像它們的位置關(guān)系.
(2)掌握兩條直線平行與垂直的判定定理和性質(zhì)定理,掌握兩條直線所成的角和距離的概念,對(duì)于異面直線的距離,只要求會(huì)計(jì)算已給出公垂線時(shí)的距離.
(3)掌握直線和平面平行的判定定理和性質(zhì)定理;掌握直線和平面垂直的判定定理和性質(zhì)定理;掌握斜線在平面上的射影、直線和平面所成的角、直線和平面的距離的概念掌握三垂線定理及其逆定理.
(4)掌握兩個(gè)平面平行的判定定理和性質(zhì)定理,掌握二面角、二面角的平面角、兩個(gè)平行平面間的距離的概念,掌握兩個(gè)平面垂直的判定定理和性質(zhì)定理.
(5)會(huì)用反證法證明簡(jiǎn)單的問(wèn)題.
(6)了解多面體、凸多面體的概念,了解正多面體的概念.
(7)了解棱柱的概念,掌握棱柱的性質(zhì),會(huì)畫直棱柱的直觀圖.
(8)了解棱錐的概念,掌握正棱錐的性質(zhì),會(huì)畫正棱錐的直觀圖.
(9)了解球的概念,掌握球的性質(zhì),掌握球的表面積、體積公式.
知識(shí)要點(diǎn)一、平面.1.經(jīng)過(guò)不在同一條直線上的三點(diǎn)確定一個(gè)面.注:兩兩相交且不過(guò)同一點(diǎn)的四條直線必在同一平面內(nèi).2.兩個(gè)平面可將平面分成3或4部分.(①兩個(gè)平面平行,②兩個(gè)平面相交)3.過(guò)三條互相平行的直線可以確定1或3個(gè)平面.(①三條直線在一個(gè)平面內(nèi)平行,②三條直線不在一個(gè)平面內(nèi)平行)[注]:三條直線可以確定三個(gè)平面,三條直線的公共點(diǎn)有0或1個(gè).4.三個(gè)平面最多可把空間分成8部分.(X、Y、Z三個(gè)方向)二、空間直線.1.空間直線位置分三種:相交、平行、異面.相交直線—共面有反且有一個(gè)公共點(diǎn);平行直線—共面沒(méi)有公共點(diǎn);異面直線—不同在任一平面內(nèi)[注]:①兩條異面直線在同一平面內(nèi)射影一定是相交的兩條直線.(×)(可能兩條直線平行,也可能是點(diǎn)和直線等)②直線在平面外,指的位置關(guān)系:平行或相交③若直線a、b異面,a平行于平面,b與的關(guān)系是相交、平行、在平面內(nèi).④兩條平行線在同一平面內(nèi)的射影圖形是一條直線或兩條平行線或兩點(diǎn).⑤在平面內(nèi)射影是直線的圖形一定是直線.(×)(射影不一定只有直線,也可以是其他圖形)⑥在同一平面內(nèi)的射影長(zhǎng)相等,則斜線長(zhǎng)相等.(×)(并非是從平面外一點(diǎn)向這個(gè)平面所引的垂線段和斜線段)⑦是夾在兩平行平面間的線段,若,則的位置關(guān)系為相交或平行或異面.2.異面直線判定定理:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線和平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線.(不在任何一個(gè)平面內(nèi)的兩條直線)3.平行公理:平行于同一條直線的兩條直線互相平行.4.等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等(如下圖).(二面角的取值范圍)(直線與直線所成角)(斜線與平面成角)(直線與平面所成角)(向量與向量所成角推論:如果兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成銳角(或直角)相等.5.兩異面直線的距離:公垂線的長(zhǎng)度.空間兩條直線垂直的情況:相交(共面)垂直和異面垂直.是異面直線,則過(guò)外一點(diǎn)P,過(guò)點(diǎn)P且與都平行平面有一個(gè)或沒(méi)有,但與距離相等的點(diǎn)在同一平面內(nèi).(或在這個(gè)做出的平面內(nèi)不能叫與平行的平面)三、直線與平面平行、直線與平面垂直.1.空間直線與平面位置分三種:相交、平行、在平面內(nèi).2.直線與平面平行判定定理:如果平面外一條直線和這個(gè)平面內(nèi)一條直線平行,那么這條直線和這個(gè)平面平行.(“線線平行,線面平行”)[注]:①直線與平面內(nèi)一條直線平行,則∥.(×)(平面外一條直線)②直線與平面內(nèi)一條直線相交,則與平面相交.(×)(平面外一條直線)③若直線與平面平行,則內(nèi)必存在無(wú)數(shù)條直線與平行.(√)(不是任意一條直線,可利用平行的傳遞性證之)④兩條平行線中一條平行于一個(gè)平面,那么另一條也平行于這個(gè)平面.(×)(可能在此平面內(nèi))⑤平行于同一直線的兩個(gè)平面平行.(×)(兩個(gè)平面可能相交)⑥平行于同一個(gè)平面的兩直線平行.(×)(兩直線可能相交或者異面)⑦直線與平面、所成角相等,則∥.(×)(、可能相交)3.直線和平面平行性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行.(“線面平行,線線平行”)4.直線與平面垂直是指直線與平面任何一條直線垂直,過(guò)一點(diǎn)有且只有一條直線和一個(gè)平面垂直,過(guò)一點(diǎn)有且只有一個(gè)平面和一條直線垂直.若⊥,⊥,得⊥(三垂線定理),得不出⊥.因?yàn)椤?,但不垂直O(jiān)A.三垂線定理的逆定理亦成立.直線與平面垂直的判定定理一:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這兩條直線垂直于這個(gè)平面.(“線線垂直,線面垂直”)直線與平面垂直的判定定理二:如果平行線中一條直線垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面.推論:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.[注]:①垂直于同一平面的兩個(gè)平面平行.(×)(可能相交,垂直于同一條直線的兩個(gè)平面平行)②垂直于同一直線的兩個(gè)平面平行.(√)(一條直線垂直于平行的一個(gè)平面,必垂直于另一個(gè)平面)③垂直于同一平面的兩條直線平行.(√)5.⑴垂線段和斜線段長(zhǎng)定理:從平面外一點(diǎn)向這個(gè)平面所引的垂線段和斜線段中,①射影相等的兩條斜線段相等,射影較長(zhǎng)的斜線段較長(zhǎng);②相等的斜線段的射影相等,較長(zhǎng)的斜線段射影較長(zhǎng);③垂線段比任何一條斜線段短.[注]:垂線在平面的射影為一個(gè)點(diǎn).[一條直線在平面內(nèi)的射影是一條直線.(×)]⑵射影定理推論:如果一個(gè)角所在平面外一點(diǎn)到角的兩邊的距離相等,那么這點(diǎn)在平面內(nèi)的射影在這個(gè)角的平分線上四、平面平行與平面垂直.1.空間兩個(gè)平面的位置關(guān)系:相交、平行.2.平面平行判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,哪么這兩個(gè)平面平行.(“線面平行,面面平行”)推論:垂直于同一條直線的兩個(gè)平面互相平行;平行于同一平面的兩個(gè)平面平行.[注]:一平面間的任一直線平行于另一平面.3.兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平面平行同時(shí)和第三個(gè)平面相交,那么它們交線平行.(“面面平行,線線平行”)4.兩個(gè)平面垂直性質(zhì)判定一:兩個(gè)平面所成的二面角是直二面角,則兩個(gè)平面垂直.兩個(gè)平面垂直性質(zhì)判定二:如果一個(gè)平面與一條直線垂直,那么經(jīng)過(guò)這條直線的平面垂直于這個(gè)平面.(“線面垂直,面面垂直”)注:如果兩個(gè)二面角的平面對(duì)應(yīng)平面互相垂直,則兩個(gè)二面角沒(méi)有什么關(guān)系.5.兩個(gè)平面垂直性質(zhì)定理:如果兩個(gè)平面垂直,那么在一個(gè)平面內(nèi)垂直于它們交線的直線也垂直于另一個(gè)平面.推論:如果兩個(gè)相交平面都垂直于第三平面,則它們交線垂直于第三平面.證明:如圖,找O作OA、OB分別垂直于,因?yàn)閯t.6.兩異面直線任意兩點(diǎn)間的距離公式:(為銳角取加,為鈍取減,綜上,都取加則必有)7.⑴最小角定理:(為最小角,如圖)⑵最小角定理的應(yīng)用(∠PBN為最小角)簡(jiǎn)記為:成角比交線夾角一半大,且又比交線夾角補(bǔ)角一半長(zhǎng),一定有4條.成角比交線夾角一半大,又比交線夾角補(bǔ)角小,一定有2條.成角比交線夾角一半大,又與交線夾角相等,一定有3條或者2條.成角比交線夾角一半小,又與交線夾角一半小,一定有1條或者沒(méi)有.五、棱錐、棱柱.1.棱柱.⑴①直棱柱側(cè)面積:(為底面周長(zhǎng),是高)該公式是利用直棱柱的側(cè)面展開(kāi)圖為矩形得出的.②斜棱住側(cè)面積:(是斜棱柱直截面周長(zhǎng),是斜棱柱的側(cè)棱長(zhǎng))該公式是利用斜棱柱的側(cè)面展開(kāi)圖為平行四邊形得出的.⑵{四棱柱}{平行六面體}{直平行六面體}{長(zhǎng)方體}{正四棱柱}{正方體}.{直四棱柱}{平行六面體}={直平行六面體}.⑶棱柱具有的性質(zhì):①棱柱的各個(gè)側(cè)面都是平行四邊形,所有的側(cè)棱都相等;直棱柱的各個(gè)側(cè)面都是矩形;正棱柱的各個(gè)側(cè)面都是全等的矩形.②棱柱的兩個(gè)底面與平行于底面的截面是對(duì)應(yīng)邊互相平行的全等多邊形.③過(guò)棱柱不相鄰的兩條側(cè)棱的截面都是平行四邊形.注:①棱柱有一個(gè)側(cè)面和底面的一條邊垂直可推測(cè)是直棱柱.(×)(直棱柱不能保證底面是鉅形可如圖)②(直棱柱定義)棱柱有一條側(cè)棱和底面垂直.⑷平行六面體:定理一:平行六面體的對(duì)角線交于一點(diǎn),并且在交點(diǎn)處互相平分.[注]:四棱柱的對(duì)角線不一定相交于一點(diǎn).定理二:長(zhǎng)方體的一條對(duì)角線長(zhǎng)的平方等于一個(gè)頂點(diǎn)上三條棱長(zhǎng)的平方和.推論一:長(zhǎng)方體一條對(duì)角線與同一個(gè)頂點(diǎn)的三條棱所成的角為,則.推論二:長(zhǎng)方體一條對(duì)角線與同一個(gè)頂點(diǎn)的三各側(cè)面所成的角為,則.[注]:①有兩個(gè)側(cè)面是矩形的棱柱是直棱柱.(×)(斜四面體的兩個(gè)平行的平面可以為矩形)②各側(cè)面都是正方形的棱柱一定是正棱柱.(×)(應(yīng)是各側(cè)面都是正方形的直棱柱才行)③對(duì)角面都是全等的矩形的直四棱柱一定是長(zhǎng)方體.(×)(只能推出對(duì)角線相等,推不出底面為矩形)④棱柱成為直棱柱的一個(gè)必要不充分條件是棱柱有一條側(cè)棱與底面的兩條邊垂直.(兩條邊可能相交,可能不相交,若兩條邊相交,則應(yīng)是充要條件)2.棱錐:棱錐是一個(gè)面為多邊形,其余各面是有一個(gè)公共頂點(diǎn)的三角形.[注]:①一個(gè)棱錐可以四各面都為直角三角形.②一個(gè)棱柱可以分成等體積的三個(gè)三棱錐;所以.⑴①正棱錐定義:底面是正多邊形;頂點(diǎn)在底面的射影為底面的中心.[注]:i.正四棱錐的各個(gè)側(cè)面都是全等的等腰三角形.(不是等邊三角形)ii.正四面體是各棱相等,而正三棱錐是底面為正△側(cè)棱與底棱不一定相等iii.正棱錐定義的推論:若一個(gè)棱錐的各個(gè)側(cè)面都是全等的等腰三角形(即側(cè)棱相等);底面為正多邊形.②正棱錐的側(cè)面積:(底面周長(zhǎng)為,斜高為)③棱錐的側(cè)面積與底面積的射影公式:(側(cè)面與底面成的二面角為)附:以知⊥,,為二面角.則①,②,③①②③得.注:S為任意多邊形的面積(可分別多個(gè)三角形的方法).⑵棱錐具有的性質(zhì):①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形.⑶特殊棱錐的頂點(diǎn)在底面的射影位置:①棱錐的側(cè)棱長(zhǎng)均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.②棱錐的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.③棱錐的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.④棱錐的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.⑤三棱錐有兩組對(duì)棱垂直,則頂點(diǎn)在底面的射影為三角形垂心.⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心.⑦每個(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;⑧每個(gè)四面體都有內(nèi)切球,球心是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑.[注]:i.各個(gè)側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個(gè)側(cè)面的等腰三角形不知是否全等)ii.若一個(gè)三角錐,兩條對(duì)角線互相垂直,則第三對(duì)角線必然垂直.簡(jiǎn)證:AB⊥CD,AC⊥BDBC⊥AD.令得,已知?jiǎng)t.iii.空間四邊形OABC且四邊長(zhǎng)相等,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形.iv.若是四邊長(zhǎng)與對(duì)角線分別相等,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形.簡(jiǎn)證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形EFGH為長(zhǎng)方形.若對(duì)角線等,則為正方形.3.球:⑴球的截面是一個(gè)圓面.①球的表面積公式:.②球的體積公式:.⑵緯度、經(jīng)度:①緯度:地球上一點(diǎn)的緯度是指經(jīng)過(guò)點(diǎn)的球半徑與赤道面所成的角的度數(shù).②經(jīng)度:地球上兩點(diǎn)的經(jīng)度差,是指分別經(jīng)過(guò)這兩點(diǎn)的經(jīng)線與地軸所確定的二個(gè)半平面的二面角的度數(shù),特別地,當(dāng)經(jīng)過(guò)點(diǎn)的經(jīng)線是本初子午線時(shí),這個(gè)二面角的度數(shù)就是點(diǎn)的經(jīng)度.附:①圓柱體積:(為半徑,為高)②圓錐體積:(為半徑,為高)③錐形體積:(為底面積,為高)4.①內(nèi)切球:當(dāng)四面體為正四面體時(shí),設(shè)邊長(zhǎng)為a,,,得.注:球內(nèi)切于四面體:②外接球:球外接于正四面體,可如圖建立關(guān)系式.六.空間向量.1.(1)共線向量:共線向量亦稱平行向量,指空間向量的有向線段所在直線互相平行或重合.注:①若與共線,與共線,則與共線.(×)[當(dāng)時(shí),不成立]②向量共面即它們所在直線共面.(×)[可能異面]③若∥,則存在小任一實(shí)數(shù),使.(×)[與不成立]④若為非零向量,則.(√)[這里用到之積仍為向量](2)共線向量定理:對(duì)空間任意兩個(gè)向量,∥的充要條件是存在實(shí)數(shù)(具有唯一性),使.(3)共面向量:若向量使之平行于平面或在內(nèi),則與的關(guān)系是平行,記作∥.(4)①共面向量定理:如果兩個(gè)向量不共線,則向量與向量共面的充要條件是存在實(shí)數(shù)對(duì)x、y使.②空間任一點(diǎn)O和不共線三點(diǎn)A、B、C,則是PABC四點(diǎn)共面的充要條件.(簡(jiǎn)證:P、A、B、C四點(diǎn)共面)注:①②是證明四點(diǎn)共面的常用方法.2.空間向量基本定理:如果三個(gè)向量不共面,那么對(duì)空間任一向量,存在一個(gè)唯一的有序?qū)崝?shù)組x、y、z,使.推論:設(shè)O、A、B、C是不共面的四點(diǎn),則對(duì)空間任一點(diǎn)P,都存在唯一的有序?qū)崝?shù)組x、y、z使(這里隱含x+y+z≠1).注:設(shè)四面體ABCD的三條棱,其中Q是△BCD的重心,則向量用即證.3.(1)空間向量的坐標(biāo):空間直角坐標(biāo)系的x軸是橫軸(對(duì)應(yīng)為橫坐標(biāo)),y軸是縱軸(對(duì)應(yīng)為縱軸),z軸是豎軸(對(duì)應(yīng)為豎坐標(biāo)).①令=(a1,a2,a3),,則∥(用到常用的向量模與向量之間的轉(zhuǎn)化:)②空間兩點(diǎn)的距離公式:.(2)法向量:若向量所在直線垂直于平面,則稱這個(gè)向量垂直于平面,記作,如果那么向量叫做平面的法向量.(3)用向量的常用方法:①利用法向量求點(diǎn)到面的距離定理:如圖,設(shè)n是平面的法向量,AB是平面的一條射線,其中,則點(diǎn)B到平面的距離為.②利用法向量求二面角的平面角定理:設(shè)分別是二面角中平面的法向量,則所成的角就是所求二面角的平面角或其補(bǔ)角大小(方向相同,則為補(bǔ)角,反方,則為其夾角).③證直線和平面平行定理:已知直線平面,,且CDE三點(diǎn)不共線,則a∥的充要條件是存在有序?qū)崝?shù)對(duì)使.(常設(shè)求解若存在即證畢,若不存在,則直線AB與平面相交).II.競(jìng)賽知識(shí)要點(diǎn)一、四面體.1.對(duì)照平面幾何中的三角形,我們不難得到立體幾何中的四面體的類似性質(zhì):①四面體的六條棱的垂直平分面交于一點(diǎn),這一點(diǎn)叫做此四面體的外接球的球心;②四面體的四個(gè)面組成六個(gè)二面角的角平分面交于一點(diǎn),這一點(diǎn)叫做此四面體的內(nèi)接球的球心;③四面體的四個(gè)面的重心與相對(duì)頂點(diǎn)的連接交于一點(diǎn),這一點(diǎn)叫做此四面體的重心,且重心將每條連線分為3︰1;④12個(gè)面角之和為720°,每個(gè)三面角中任兩個(gè)之和大于另一個(gè)面角,且三個(gè)面角之和為180°.2.直角四面體:有一個(gè)三面角的三個(gè)面角均為直角的四面體稱為直角四面體,相當(dāng)于平面幾何的直角三角形.(在直角四面體中,記V、l、S、R、r、h分別表示其體積、六條棱長(zhǎng)之和、表面積、外接球半徑、內(nèi)切球半徑及側(cè)面上的高),則有空間勾股定理:S2△ABC+S2△BCD+S2△ABD=S2△ACD.3.等腰四面體:對(duì)棱都相等的四面體稱為等腰四面體,好象平面幾何中的等腰三角形.根據(jù)定義不難證明以長(zhǎng)方體的一個(gè)頂點(diǎn)的三條面對(duì)角線的端點(diǎn)為頂點(diǎn)的四面體是等腰四面體,反之也可以將一個(gè)等腰四面體拼補(bǔ)成一個(gè)長(zhǎng)方體.(在等腰四面體ABCD中,記BC=AD=a,AC=BD=b,AB=CD=c,體積為V,外接球半徑為R,內(nèi)接球半徑為r,高為h),則有①等腰四面體的體積可表示為;②等腰四面體的外接球半徑可表示為;③等腰四面體的四條頂點(diǎn)和對(duì)面重心的連線段的長(zhǎng)相等,且可表示為;④h=4r.二、空間正余弦定理.空間正弦定理:sin∠ABD/sin∠A-BC-D=sin∠ABC/sin∠A-BD-C=sin∠CBD/sin∠C-BA-D空間余弦定理:cos∠ABD=cos∠ABCcos∠CBD+sin∠ABCsin∠CBDcos∠A-BC-D立體幾何知識(shí)要點(diǎn)一、知識(shí)提綱(一)空間的直線與平面⒈平面的基本性質(zhì)⑴三個(gè)公理及公理三的三個(gè)推論和它們的用途.⑵斜二測(cè)畫法.⒉空間兩條直線的位置關(guān)系:相交直線、平行直線、異面直線.⑴公理四(平行線的傳遞性).等角定理.⑵異面直線的判定:判定定理、反證法.⑶異面直線所成的角:定義(求法)、范圍.⒊直線和平面平行直線和平面的位置關(guān)系、直線和平面平行的判定與性質(zhì).⒋直線和平面垂直⑴直線和平面垂直:定義、判定定理.⑵三垂線定理及逆定理.5.平面和平面平行兩個(gè)平面的位置關(guān)系、兩個(gè)平面平行的判定與性質(zhì).6.平面和平面垂直互相垂直的平面及其判定定理、性質(zhì)定理.(二)直線與平面的平行和垂直的證明思路(見(jiàn)附圖)(三)夾角與距離7.直線和平面所成的角與二面角⑴平面的斜線和平面所成的角:三面角余弦公式、最小角定理、斜線和平面所成的角、直線和平面所成的角.⑵二面角:①定義、范圍、二面角的平面角、直二面角.②互相垂直的平面及其判定定理、性質(zhì)定理.8.距離⑴點(diǎn)到平面的距離.⑵直線到與它平行平面的距離.⑶兩個(gè)平行平面的距離:兩個(gè)平行平面的公垂線、公垂線段.⑷異面直線的距離:異面直線的公垂線及其性質(zhì)、公垂線段.(四)簡(jiǎn)單多面體與球9.棱柱與棱錐⑴多面體.⑵棱柱與它的性質(zhì):棱柱、直棱柱、正棱柱、棱柱的性質(zhì).⑶平行六面體與長(zhǎng)方體:平行六面體、直平行六面體、長(zhǎng)方體、正四棱柱、正方體;平行六面體的性質(zhì)、長(zhǎng)方體的性質(zhì).⑷棱錐與它的性質(zhì):棱錐、正棱錐、棱錐的性質(zhì)、正棱錐的性質(zhì).⑸直棱柱和正棱錐的直觀圖的畫法.10.多面體歐拉定理的發(fā)現(xiàn)⑴簡(jiǎn)單多面體的歐拉公式.⑵正多面體.11.球⑴球和它的性質(zhì):球體、球面、球的大圓、小圓、球面距離.⑵球的體積公式和表面積公式.二、常用結(jié)論、方法和公式1.從一點(diǎn)O出發(fā)的三條射線OA、OB、OC,若∠AOB=∠AOC,則點(diǎn)A在平面∠BOC上的射影在∠BOC的平分線上;A2.已知:直二面角M-AB-N中,AEM,BFN,∠EAB=,∠ABF=,異面直線AE與BF所成的角為,則A3.立平斜公式:如圖,AB和平面所成的角是,AC在平面內(nèi),BC和AB的射影BA1成,設(shè)∠ABC=,則coscos=cos;4.異面直線所成角的求法:(1)平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;(2)補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系;5.直線與平面所成的角斜線和平面所成的是一個(gè)直角三角形的銳角,它的三條邊分別是平面的垂線段、斜線段及斜線段在平面上的射影。通常通過(guò)斜線上某個(gè)特殊點(diǎn)作出平面的垂線段,垂足和斜足的連線,是產(chǎn)生線面角的關(guān)鍵
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 國(guó)慶節(jié)聯(lián)誼活動(dòng)方案
- 現(xiàn)代經(jīng)濟(jì)環(huán)境下的市場(chǎng)動(dòng)態(tài)與趨勢(shì)分析
- 弱電施工方案范本
- 1 有余數(shù)的除法 第二課時(shí)(說(shuō)課稿)-2023-2024學(xué)年二年級(jí)下冊(cè)數(shù)學(xué)蘇教版
- 2023三年級(jí)英語(yǔ)下冊(cè) Unit 1 My Body第1課時(shí)說(shuō)課稿 陜旅版(三起)
- 6 有多少浪費(fèi)本可避免 第一課時(shí) 說(shuō)課稿-2023-2024學(xué)年道德與法治四年級(jí)下冊(cè)統(tǒng)編版001
- 2024年八年級(jí)物理下冊(cè) 12.1杠桿說(shuō)課稿 (新版)新人教版001
- 《14學(xué)習(xí)有方法》(說(shuō)課稿)-部編版(五四制)道德與法治二年級(jí)下冊(cè)
- 2023九年級(jí)語(yǔ)文下冊(cè) 第三單元 11 送東陽(yáng)馬生序說(shuō)課稿 新人教版001
- Unit8 We're twins(說(shuō)課稿)-2023-2024學(xué)年譯林版(三起)英語(yǔ)三年級(jí)下冊(cè)
- 長(zhǎng)江委水文局2025年校園招聘17人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年湖南韶山干部學(xué)院公開(kāi)招聘15人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- JGJ46-2024 建筑與市政工程施工現(xiàn)場(chǎng)臨時(shí)用電安全技術(shù)標(biāo)準(zhǔn)
- 家譜、宗譜頒譜慶典講話
- 元代文學(xué)-緒論課件
- 2023年版勞動(dòng)實(shí)踐河北科學(xué)技術(shù)出版社一年級(jí)下冊(cè)全冊(cè)教案
- 方案報(bào)審表(樣表)
- pp顧問(wèn)的常見(jiàn)面試問(wèn)題
- 法理學(xué)原理與案例完整版教學(xué)課件全套ppt教程
- 隧道仰拱施工之仰拱棧橋結(jié)構(gòu)計(jì)算書
- 軟體家具、沙發(fā)質(zhì)量檢驗(yàn)及工藝
評(píng)論
0/150
提交評(píng)論