2022年新疆生產(chǎn)建設(shè)兵團(tuán)中考數(shù)學(xué)試卷_第1頁
2022年新疆生產(chǎn)建設(shè)兵團(tuán)中考數(shù)學(xué)試卷_第2頁
2022年新疆生產(chǎn)建設(shè)兵團(tuán)中考數(shù)學(xué)試卷_第3頁
2022年新疆生產(chǎn)建設(shè)兵團(tuán)中考數(shù)學(xué)試卷_第4頁
2022年新疆生產(chǎn)建設(shè)兵團(tuán)中考數(shù)學(xué)試卷_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

新疆生產(chǎn)建設(shè)兵團(tuán)2022年中考數(shù)學(xué)試卷一、精心選擇(本大題共8小題,每小題5分,共40分.)1、(2022?新疆)我國第六次人口普查公布全國人口約為137054萬,用科學(xué)記數(shù)法表示是() A、1.37054×108 B、1.37054×109 C、1.37054×1010 D、0.137054×1010考點:科學(xué)記數(shù)法—表示較大的數(shù)。分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).解答:解:137054萬=1370540000人.將1370540000用科學(xué)記數(shù)法表示為:1.37054×109.故選B.點評:此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.2、(2022?新疆)已知:a=﹣a,則數(shù)a等于() A、0 B、﹣1 C、1 D、不確定考點:解一元一次方程。專題:探究型。分析:由a=﹣a得a+a=0,即2a=0,所以a=0.解答:解:因為a=﹣a,所以a+a=0,即2a=0,則a=0,故選:A.點評:此題考查的知識點是解一元一次方程,關(guān)鍵是通過移項求解.3、(2022?新疆)如圖,AB∥CD,AD和BC相交于點O,∠A=40°,∠AOB=75°.則∠C等于() A、40° B、65° C、75° D、115°考點:平行線的性質(zhì)。分析:由∠A=40°,∠AOB=75°,根據(jù)三角形內(nèi)角和定理,即可求得∠B的度數(shù),又由AB∥CD,根據(jù)兩直線平行,內(nèi)錯角相等,即可求得∠C的值.解答:解:∵∠A=40°,∠AOB=75°.∴∠B=180°﹣∠A﹣∠AOB=180°﹣40°﹣75°=65°,∵AB∥CD,∴∠C=∠B=65°.故選B.點評:此題考查了平行線的性質(zhì)與三角形內(nèi)角和定理.解題的關(guān)鍵是掌握兩直線平行,內(nèi)錯角相等的定理的應(yīng)用.4、(2022?新疆)在社會實踐活動中,某同學(xué)對甲、乙、丙、丁四個城市一至五月份的白菜價格進(jìn)行調(diào)查.四個城市5個月白菜的平均值均為3.50元,方差分別為S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.一至五月份白菜價格最穩(wěn)定的城市是() A、甲 B、乙 C、丙 D、丁考點:方差。分析:據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.根據(jù)方差分別為S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.可找到最穩(wěn)定的.解答:解:因為丁城市的方差最小,所以丁最穩(wěn)定.故選D.點評:本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.5、(2022?新疆)下列各式中正確的是() A、(﹣a3)2=﹣a6 B、(2b﹣5)2=4b2﹣25 C、(a﹣b)(b﹣a)=﹣(a﹣b)2 D、a2+2ab+(﹣b)2=(a﹣b)2考點:完全平方公式;冪的乘方與積的乘方。專題:計算題。分析:根據(jù)冪的乘方與積的乘方的計算法則和完全平方公式進(jìn)行判斷即可解答:解:A、(﹣a3)2=a6,故選項錯誤;B、(2b﹣5)2=4b2﹣20b+25,故選項錯誤;C、(a﹣b)(b﹣a)=﹣(a﹣b)2,故選項正確;D、a2+2ab+(﹣b)2=(a+b)2,故選項錯誤.故選C.點評:本題主要考查冪的乘方與積的乘方和完全平方公式,熟記完全平方公式對解題大有幫助.6、(2022?新疆)將(﹣QUOTE)0,(﹣QUOTE)3,(﹣cos30°)﹣2,這三個實數(shù)從小到大的順序排列,正確的順序是() A、(﹣QUOTE)3<(﹣QUOTE)0<(﹣cos30°)﹣2 B、(﹣cos30°)﹣2<(﹣QUOTE)0<(﹣QUOTE)3 C、(﹣QUOTE)0<(﹣QUOTE)3<(﹣cos30°)﹣2 D、(﹣cos30°)﹣2<(﹣QUOTE)3<(﹣QUOTE)0考點:實數(shù)大小比較;零指數(shù)冪;負(fù)整數(shù)指數(shù)冪;特殊角的三角函數(shù)值。分析:分別根據(jù)0指數(shù)冪、數(shù)的乘方、特殊角的三角函數(shù)值及負(fù)整數(shù)指數(shù)冪的運(yùn)算計算出各數(shù),再根據(jù)實數(shù)比較大小的法則比較出各數(shù)的大小即可.解答:解:∵(﹣QUOTE)0=1,(﹣QUOTE)3=﹣3QUOTE,(﹣cos30°)﹣2=(﹣QUOTE)﹣2=QUOTE,∵﹣3QUOTE<0,QUOTE>1,∴﹣3QUOTE<1<QUOTE,即(﹣QUOTE)3<(﹣QUOTE)0<(﹣cos30°)﹣2.故選A.點評:本題考查的是實數(shù)的大小比較,熟知0指數(shù)冪、數(shù)的乘方、特殊角的三角函數(shù)值及負(fù)整數(shù)指數(shù)冪的運(yùn)算是解答此題的關(guān)鍵.7、(2022?新疆)如圖,l1是反比例函數(shù)y=QUOTE在第一象限內(nèi)的圖象,且經(jīng)過點A(1,2).l1關(guān)于x軸對稱的圖象為l2,那么l2的函數(shù)表達(dá)式為() A、y=QUOTE(x<0) B、y=QUOTE(x>0) C、y=﹣QUOTE(x<0) D、y=﹣QUOTE(x>0)考點:反比例函數(shù)的性質(zhì)。分析:因為l1關(guān)于x軸對稱的圖象為l2,因此可知道A關(guān)于x軸的對稱點A′在l2的函數(shù)圖象上,從而可求出解析式.解答:解:A(1,2)關(guān)于x軸的對稱點為(1,﹣2).所以l2的解析式為:y=﹣QUOTE,因為l1是反比例函數(shù)y=QUOTE在第一象限內(nèi)的圖象,所以x>0.故選D.點評:本題考查反比例函數(shù)的性質(zhì),知道一點可以確定函數(shù)式,因此根據(jù)對稱找到反比例函數(shù)上的點,從而求出解.8、(2022?新疆)某幾何體的三視圖及相關(guān)數(shù)據(jù)如圖所示,該幾何體的全面積s等于() A、QUOTEπa(a+c) B、QUOTEπa(a+b) C、πa(a+c) D、πa(a+b)考點:圓錐的計算;由三視圖判斷幾何體。分析:由幾何體的主視圖和左視圖,俯視圖是圓,可以判斷這個幾何體是圓錐.解答:解:依題意知弧長l=c,底面半徑r=a,則由圓錐的側(cè)面積公式得S=πrl=π?c?a=πac.底面圓的面積為:πa2,∴該幾何體的全面積s等于:πa(a+c).故選:C.點評:此題主要考查了三視圖的知識和圓錐側(cè)面面積的計算;解決此類圖的關(guān)鍵是由三視圖得到立體圖形;學(xué)生由于空間想象能力不夠,找不到圓錐的底面半徑,或者對圓錐的側(cè)面面積公式運(yùn)用不熟練,易造成錯誤.二、合理填空(本大題共6個小題,每小題5分,共30分)9、若二次根式QUOTE有意義,則x的取值范圍是x≥QUOTE.考點:二次根式有意義的條件。專題:計算題。分析:根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0,就可以求解.解答:解:根據(jù)二次根式有意義,分式有意義得:3x﹣1≥0,解得:x≥QUOTE.故答案為:x≥QUOTE.點評:本題考查二次根式有意義的條件,知識點為:二次根式的被開方數(shù)是非負(fù)數(shù).10、(2022?新疆)方程QUOTE=4的解為x=QUOTE.考點:解分式方程。專題:計算題。分析:觀察可得最簡公分母是(x﹣1),方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解.解答:解:方程的兩邊同乘(x﹣1),得﹣2x﹣1=4(x﹣1),解得x=QUOTE.檢驗:把x=QUOTE代入(x﹣1)=﹣QUOTE≠0.∴原方程的解為:x=QUOTE.故答案為:x=QUOTE.點評:本題考查了分式方程的解法,(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.(2)解分式方程一定注意要驗根.11、(2022?新疆)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于2QUOTEcm.考點:等邊三角形的性質(zhì);勾股定理。專題:應(yīng)用題。分析:根據(jù)等邊三角形的性質(zhì)可求得∠BAD=30°,已知AB=4,則在RT△ABD中,可得到BD的長,再利用勾股定理求得AD的長.解答:解:∵△ABC是等邊三角形,AD是BC邊上的高,∴∠BAD=30°,在Rt△ABC中,AB=4,∴BD=2,∴AD=QUOTE=QUOTE=2QUOTE,故答案為2QUOTE.點評:本題主要考查學(xué)生對等邊三角形的性質(zhì)的理解及運(yùn)用,難度適中.12、(2022?新疆)若關(guān)于x的一元二次方程x2+2x+a=0有實數(shù)根,則a的取值范圍是a≤1.考點:根的判別式。分析:在與一元二次方程有關(guān)的求值問題中,必須滿足下列條件:(1)二次項系數(shù)不為零;(2)在有實數(shù)根下必須滿足△=b2﹣4ac≥0.解答:解:因為關(guān)于x的一元二次方程有實根,所以△=b2﹣4ac=4﹣4a≥0,解之得a≤1.故答案為a≤1.點評:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))根的判別式.當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.13、(2022?新疆)如圖,∠BAC所對的?。▓D中QUOTE)的度數(shù)為120°,⊙O的半徑為5,則弦BC的長為5QUOTE.考點:圓周角定理;解直角三角形。專題:探究型。分析:連接OB、OB,過O點作OD⊥BC于點D,由QUOTE可求出∠BOB=120°,再由垂徑定理可知BD=QUOTEBC,根據(jù)銳角三角函數(shù)的定義可求出BD的長,進(jìn)而可得出BC的長.解答:解:連接OB、OB,過O點作,OD⊥BC于點D,∵QUOTE=120°,∴∠BOC=120°,∵OD⊥BC,∴BD=QUOTEBC,∠BOD=QUOTE∠BOC=QUOTE×120°=60°,在Rt△OBD中,BD=OB?sin∠BOD=5×QUOTE=QUOTE,∴BC=2BD=2×QUOTE=5QUOTE.故答案為:5QUOTE.點評:本題考查的是圓心角、弧、弦的關(guān)系及垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用銳角三角函數(shù)的定義解答是解答此題的關(guān)鍵.14、(2022?新疆)如圖,在3×3的正方形網(wǎng)格中,已有兩個小正方形被涂黑.再將圖中其余小正方形任意涂黑一個,使整個圖案構(gòu)成一個軸對稱圖形的方法有5種.考點:利用軸對稱設(shè)計圖案。專題:幾何圖形問題。分析:根據(jù)軸對稱的概念作答.如果一個圖形沿一條直線對折,直線兩旁的部分能互相重合,那么這個圖形叫做軸對稱圖形.解答:解:選擇一個正方形涂黑,使得3個涂黑的正方形組成軸對稱圖形,選擇的位置有以下幾種:1處,3處,7處,6處,5處,選擇的位置共有5處.故答案為:5.點評:本題考查了利用軸對稱設(shè)計圖案的知識,關(guān)鍵是掌握好軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.三、解答題(一)(本大題共有3題,共20分)15、(2022?新疆)先化簡,再求值:(QUOTE+1)÷QUOTE,其中x=2.考點:分式的化簡求值。專題:計算題。分析:先對括號里的分式通分,計算出來后,再把除法轉(zhuǎn)化為乘法,最后把x的值代入計算即可.解答:解:原式=QUOTE?QUOTE=x+1.當(dāng)x=2時,x+1=3.點評:本題考查了分式的化簡求值.解題的關(guān)鍵是對分式的分子、分母要進(jìn)行因式分解.16、(2022?新疆)解不等式組QUOTE,并將解集在數(shù)軸上表示出來.考點:解一元一次不等式組;不等式的性質(zhì);在數(shù)軸上表示不等式的解集;解一元一次不等式。專題:計算題。分析:根據(jù)不等式的性質(zhì)求出不等式的解集,根據(jù)找不等式組解集的規(guī)律找出不等式組的解集即可.解答:解:QUOTE,解不等式①得:x<3,解不等式②得:x≥1,∴不等式組的解集是1≤x<3,把不等式組的解集在數(shù)軸上表示為:.點評:本題主要考查對不等式的性質(zhì),解一元一次不等式(組),在數(shù)軸上表示不等式組的解集等知識點的理解和掌握,能根據(jù)不等式的解集找出不等式組的解集是解此題的關(guān)鍵.17、(2022?新疆)甲、乙兩縣參加由地區(qū)教育局舉辦的“雙語口語”大賽,兩縣參賽人數(shù)相等.比賽結(jié)束后,學(xué)生成績分別為7分、8分、9分、10分(滿分10分).甲、乙兩縣不完整成績統(tǒng)計表如右表所示.經(jīng)計算,乙縣的平均分是8.25,中位數(shù)是8分.(1)請寫出扇形圖中“8分”所在扇形的圓心角度數(shù);求出甲縣的平均分、中位數(shù);根據(jù)以上信息分析哪個縣的成績較好;(2)若地區(qū)教育局要組織一個由8人的代表隊參加自治區(qū)組織的團(tuán)體賽,為了便于管理,決定從這兩個縣的一個縣中挑選參賽選手.請你分析該從哪個縣選?。?、乙兩縣成績統(tǒng)計表乙縣成績扇形統(tǒng)計圖分?jǐn)?shù)7分8分9分10分甲縣人數(shù)11108乙縣人數(shù)835考點:扇形統(tǒng)計圖;加權(quán)平均數(shù);中位數(shù)。分析:(1)先求出乙縣中得8分的占幾人,然后求出它占總?cè)藬?shù)的百分比,然后再乘以360度即可求出圓心角的度數(shù);根據(jù)平均數(shù)公式求出甲縣的平均數(shù),再由中位數(shù)的定義求出中位數(shù),從平均分和中位數(shù)角度上判斷,乙縣的成績較好.(2)根據(jù)題意從圖上可知,甲校得(10分)的有8人,而乙校得(10分)的只有5人,所以應(yīng)選甲校.解答:解:(1)∵兩縣參賽人數(shù)相等,∴乙縣人數(shù)為20人,則8分的有20﹣8﹣3﹣5=4人,占總?cè)藬?shù)的百分比為4÷20×100%=20%,∴扇形圖中“8分”所在扇形的圓心角度數(shù)=360°×20%=72°;甲縣的平均分=(11×7+8×1+10×8)÷20=8.25分,中位數(shù)是(7+7)÷2=7;由于兩校平均分相等,中位數(shù)甲縣較低,所以從平均分和中位數(shù)角度上判斷,乙縣的成績較好.(2)因為選8名學(xué)生參加市級口語團(tuán)體賽,甲校得(10分)的有8人,而乙校得(10分)的只有5人,所以應(yīng)選甲校.點評:本題考查的是扇形統(tǒng)計圖的運(yùn)用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.扇形統(tǒng)計圖直接反映部分占總體的百分比大小.另外還要理解中位數(shù)的概念.四、解答題(二)(本大題共有7題,共60分)18、(2022?新疆)有紅、黃兩個盒子,紅盒子中裝有編號分別為1、2、3、5的四個紅球,黃盒子中裝有編號為1、2、3的三個黃球.甲、乙兩人玩摸球游戲,游戲規(guī)則為:甲從紅盒子中每次摸出一個小球,乙從黃盒子中每次摸出一個小球,若兩球編號之和為奇數(shù),則甲勝,否則乙勝.(1)試用列表或畫樹狀圖的方法,求甲獲勝的概率;(2)請問這個游戲規(guī)則對甲、乙雙方公平嗎?若公平,請說明理由;若不公平,試改動紅盒子中的一個小球的編號,使游戲規(guī)則公平.考點:游戲公平性;列表法與樹狀圖法。分析:(1)首先畫樹狀圖,然后根據(jù)樹狀圖即可求得甲獲勝的概率;(2)根據(jù)樹狀圖,求得甲、乙獲勝的概率,然后比較概率,即可求得這個游戲規(guī)則對甲、乙雙方是否公平.解答:解:(1)畫樹狀圖得:∴一共有12種等可能的結(jié)果,兩球編號之和為奇數(shù)有5種情況,∴P(甲勝)=QUOTE;(2)∵P(乙勝)=QUOTE,∴P(甲勝)≠P(乙勝),∴這個游戲規(guī)則對甲、乙雙方不公平;將紅盒子中裝有編號分別為1、2、3、5的四個紅球,改為1、2、3、4的四個紅球即可.點評:本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.19、(2022?新疆)已知拋物線y=﹣x2+4x﹣3與x軸交于A、B兩點(A點在B點左側(cè)),頂點為P.(1)求A、B、P三點的坐標(biāo);(2)在直角坐標(biāo)系中,用列表描點法作出拋物線的圖象,并根據(jù)圖象寫出x取何值時,函數(shù)值大于零;(3)將此拋物線的圖象向下平移一個單位,請寫出平稱后圖象的函數(shù)表達(dá)式.xy考點:拋物線與x軸的交點;二次函數(shù)的圖象;二次函數(shù)圖象與幾何變換。分析:(1)令y=0求得點A、B的坐標(biāo),根據(jù)拋物線的頂點公式求得點P的坐標(biāo);(2)首先寫出以頂點為中心的5個點的坐標(biāo),從而畫出圖象,結(jié)合與x軸的交點,寫出x取何值時,函數(shù)值大于零;(3)將此拋物線的圖象向下平移一個單位,即對應(yīng)點的縱坐標(biāo)少1,從而寫出函數(shù)解析式.解答:解:(1)令y=0,則﹣x2+4x﹣3=0,解,得x=1或x=3.則A(1,0),B(3,0).根據(jù)頂點坐標(biāo)公式,則﹣QUOTE=2,QUOTE=1,即P(2,1);(2)根據(jù)圖象,得1<x<3時,函數(shù)值大于零;(3)拋物線的對頂點式是y=﹣(x﹣2)2+1,則將此拋物線的圖象向下平移一個單位后,得到y(tǒng)=﹣(x﹣2)2+1﹣1═﹣x2+4x﹣4.點評:此題考查了拋物線與x軸的交點以及頂點坐標(biāo)、拋物線的畫法以及與不等式之間的關(guān)系、拋物線的平移和解析式的變化.20、(2022?新疆)如圖,在△ABC中,∠A=90°.(1)用尺規(guī)作圖的方法,作出△ABC繞點A逆時針旋轉(zhuǎn)45°后的圖形△AB1C1(保留作圖痕跡);(2)若AB=3,BC=5,求tan∠AB1C1.考點:作圖-旋轉(zhuǎn)變換;銳角三角函數(shù)的定義。分析:(1)作出∠CAB的平分線,在平分線上截取AB1=AB,再作出AB1的垂線,即可得出答案.(2)利用旋轉(zhuǎn)的性質(zhì)得出AB1=3,AC1=4,再利用銳角三角函數(shù)的定義即可求出.解答:解:(1)作∠CAB的平分線,在平分線上截取AB1=AB,作C1A⊥AB1,在AC1上截取AC1=AC,如圖所示即是所求.(2)∵AB=3,BC=5,∴AC=4,∴AB1=3,AC1=4,tan∠AB1C1=QUOTE=QUOTE.點評:此題主要考查了做旋轉(zhuǎn)圖形和銳角三角函數(shù)的定義,根據(jù)已知熟練記憶銳角三角函數(shù)的定義是解決問題的關(guān)鍵.21、(2022?新疆)請判斷下列命題是否正確?如果正確,請給出證明;如果不正確,請舉出反例.(1)一組對邊平行且相等的四邊形是平行四邊形;(2)一組對角相等,一條對角線被另一條對角線平分的四邊形是平行四邊形.考點:平行四邊形的判定;反證法。專題:證明題。分析:(1)作出草圖,連接一條對角線,然后證明三角形全等,根據(jù)全等三角形的對應(yīng)角相等在證明另一組對邊也平行,然后根據(jù)平行四邊形的定義即可證明;(2)不正確,可以做出一個“箏形”圖形說明.解答:(1)已知:如圖,在四邊形ABCD中,AB∥CD,AB=CD,求證:四邊形ABCD是平行四邊形,證明:連接BD,∵AB∥CD,∴∠ABD=∠BDC,在△ABD和△CDB中,QUOTE,∴△ABD≌△CDB(SAS),∴∠ADB=∠DBC(全等三角形對應(yīng)角相等),∴AD∥BC(內(nèi)錯角相等,兩直線平行),∴四邊形ABCD是平行四邊形;(2)一組對角相等,一條對角線被另一條對角線平分的四邊形是平行四邊形不正確.如右圖,∠BAD=∠BCD,對角線AC被BD平分,但四邊形ABCD不是平行四邊形.點評:本題主要考查了平行四邊形的判定定理的證明,連接對角線構(gòu)造出全等三角形是解題的關(guān)鍵.22、(2022?新疆)如圖,在Rt△ABC中,AB=3,BC=4,圓心O在AC上,⊙O與BC相切于點D,求⊙O的半徑.考點:切線的性質(zhì);勾股定理;相似三角形的判定與性質(zhì)。分析:根據(jù)勾股定理得AC=5.連接OD,則OD⊥BC.設(shè)OD=r,則OC=5﹣r.根據(jù)sinC=AB:AC=OD:OC建立關(guān)系式求解.解答:解:連接OD.∵⊙O與BC相切于點D,∴OD⊥BC.∵在Rt△ABC中,AB=3,BC=4,∴AC=QUOTE=5.設(shè)⊙O的半徑為r,則OC=5﹣r.∵sinC=AB:AC=OD:OC,即3:5=r:(5﹣r),∴r=QUOTE.即⊙O的半徑為QUOTE.點評:此題考查切線的性質(zhì)、勾股定理、三角函數(shù)的定義等知識點,有一定的綜合性,難度中等.23、(2022?新疆)某商場推銷一種書包,進(jìn)價為30元,在試銷中發(fā)現(xiàn)這種書包每天的銷售量P(個)與每個書包銷售價x(元)滿足一次函數(shù)關(guān)系式.當(dāng)定價為35元時,每天銷售30個;定價為37元時,每天銷售26個.問:如果要保證商場每天銷售這種書包獲利200元,求書包的銷售單價應(yīng)定為多少元?考點:一元二次方程的應(yīng)用;待定系數(shù)法求一次函數(shù)解析式。分析:根據(jù)題意找出漲價和銷售量的關(guān)系,然后根據(jù)利潤200元列方程求解,設(shè)此時書包的單價是x元.解答:解:(30﹣26)÷(37﹣35)=2,每漲價1元,少賣2個.設(shè)此時書包的單價是x元.(x﹣30)[30﹣2(x﹣35)]=200,x=40.故此時書包的單價是40元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論