版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
APOS:AConstructivistTheoryofLearning
inUndergraduateMathematicsEducationResearch
EdDubinsky,GeorgiaStateUniversity,USA
and
MichaelA.McDonald,OccidentalCollege,USA
Theworkreportedinthispaperisbasedontheprinciplethatresearchinmathematicseducation
isstrengthenedinseveralwayswhenbasedonatheoreticalperspective.Developmentofatheoryor
modelinmathematicseducationshouldbe,inourview,partofanattempttounderstandhow
mathematicscanbelearnedandwhataneducationalprogramcandotohelpinthislearning.Wedo
notthinkthatatheoryoflearningisastatementoftruthandalthoughitmayormaynotbean
approximationtowhatisreallyhappeningwhenanindividualtriestolearnoneoranotherconceptin
mathematics,thisisnotourfocus.Ratherweconcentrateonhowatheoryoflearningmathematics
canhelpusunderstandthelearningprocessbyprovidingexplanationsofphenomenathatwecan
observeinstudentswhoaretryingtoconstructtheirunderstandingsofmathematicalconceptsandby
suggestingdirectionsforpedagogythatcanhelpinthislearningprocess.
Modelsandtheoriesinmathematicseducationcan
?supportprediction,
?haveexplanatorypower,
?beapplicabletoabroadrangeofphenomena,
?helporganizeone’sthinkingaboutcomplex,interrelatedphenomena,
?serveasatoolforanalyzingdata,and
?providealanguageforcommunicationofideasaboutlearningthatgobeyondsuperficial
descriptions.
Wewouldliketoofferthesesixfeatures,thefirstthreeofwhicharegivenbyAlanSchoenfeldin
“Towardatheoryofteaching-in-context,”IssuesinEducation,bothaswaysinwhichatheorycan
contributetoresearchandascriteriaforevaluatingatheory.
1
Inthispaper,wedescribeonesuchperspective,APOSTheory,inthecontextofundergraduate
mathematicseducation.Weexplaintheextenttowhichithastheabovecharacteristics,discussthe
rolethatthistheoryplaysinaresearchandcurriculumdevelopmentprogramandhowsuchaprogram
cancontributetothedevelopmentofthetheory,describebrieflyhowworkingwiththisparticular
theoryhasprovidedavehicleforbuildingacommunityofresearchersinundergraduatemathematics
education,andindicatetheuseofAPOSTheoryinspecificresearchstudies,bothbyresearcherswho
aredevelopingitaswellasothersnotconnectedwithitsdevelopment.Weprovide,inconnection
withthispaper,anannotatedbibliographyofresearchreportswhichinvolvethistheory.
APOSTheory
Thetheorywepresentbeginswiththehypothesisthatmathematicalknowledgeconsistsinan
individual’stendencytodealwithperceivedmathematicalproblemsituationsbyconstructingmental
actions,processes,andobjectsandorganizingtheminschemastomakesenseofthesituationsand
solvetheproblems.InreferencetothesementalconstructionswecallitAPOSTheory.Theideas
arisefromourattemptstoextendtothelevelofcollegiatemathematicslearningtheworkofJ.Piaget
onreflectiveabstractioninchildren’slearning.APOSTheoryisdiscussedindetailinAsiala,et.al.
(1996).Wewillarguethatthistheoreticalperspectivepossesses,atleasttosomeextent,the
characteristicslistedaboveand,moreover,hasbeenveryusefulinattemptingtounderstandstudents’
learningofabroadrangeoftopicsincalculus,abstractalgebra,statistics,discretemathematics,and
otherareasofundergraduatemathematics.Hereisabriefsummaryoftheessentialcomponentsofthe
theory.
Anactionisatransformationofobjectsperceivedbytheindividualasessentiallyexternaland
asrequiring,eitherexplicitlyorfrommemory,step-by-stepinstructionsonhowtoperformthe
operation.Forexample,anindividualwithanactionconceptionofleftcosetwouldberestrictedto
workingwithaconcretegroupsuchasZ20andheorshecouldconstructsubgroups,suchas
H={0,4,8,12,16}byformingthemultiplesof4.Thentheindividualcouldwritetheleftcosetof5as
theset5+H={1,5,9,13,17}consistingoftheelementsofZ20whichhaveremaindersof1whendivided
by4.
2
Whenanactionisrepeatedandtheindividualreflectsuponit,heorshecanmakeaninternal
mentalconstructioncalledaprocesswhichtheindividualcanthinkofasperformingthesamekindof
action,butnolongerwiththeneedofexternalstimuli.Anindividualcanthinkofperforminga
processwithoutactuallydoingit,andthereforecanthinkaboutreversingitandcomposingitwith
otherprocesses.Anindividualcannotusetheactionconceptionofleftcosetdescribedabovevery
effectivelyforgroupssuchasS4,thegroupofpermutationsoffourobjectsandthesubgroupH
correspondingtothe8rigidmotionsofasquare,andnotatallforgroupsSnforlargevaluesofn.In
suchcases,theindividualmustthinkoftheleftcosetofapermutationpasthesetofallproductsph,
wherehisanelementofH.Thinkingaboutformingthissetisaprocessconceptionofcoset.
Anobjectisconstructedfromaprocesswhentheindividualbecomesawareoftheprocessasa
totalityandrealizesthattransformationscanactonit.Forexample,anindividualunderstandscosets
asobjectswhenheorshecanthinkaboutthenumberofcosetsofaparticularsubgroup,canimagine
comparingtwocosetsforequalityorfortheircardinalities,orcanapplyabinaryoperationtothesetof
allcosetsofasubgroup.
Finally,aschemaforacertainmathematicalconceptisanindividual’scollectionofactions,
processes,objects,andotherschemaswhicharelinkedbysomegeneralprinciplestoforma
frameworkintheindividual’smindthatmaybebroughttobearuponaproblemsituationinvolving
thatconcept.Thisframeworkmustbecoherentinthesensethatitgives,explicitlyorimplicitly,
meansofdeterminingwhichphenomenaareinthescopeoftheschemaandwhicharenot.Because
thistheoryconsidersthatallmathematicalentitiescanberepresentedintermsofactions,processes,
objects,andschemas,theideaofschemaisverysimilartotheconceptimagewhichTallandVinner
introducein“Conceptimageandconceptdefinitioninmathematicswithparticularreferencetolimits
andcontinuity,”EducationalStudiesinMathematics,12,151-169(1981).Ourrequirementof
coherence,however,distinguishesthetwonotions.
Thefourcomponents,action,process,object,andschemahavebeenpresentedhereina
hierarchical,orderedlist.Thisisausefulwayoftalkingabouttheseconstructionsand,insomesense,
eachconceptioninthelistmustbeconstructedbeforethenextstepispossible.Inreality,however,
whenanindividualisdevelopingherorhisunderstandingofaconcept,theconstructionsarenot
3
actuallymadeinsuchalinearmanner.Withanactionconceptionoffunction,forexample,an
individualmaybelimitedtothinkingaboutformulasinvolvingletterswhichcanbemanipulatedor
replacedbynumbersandwithwhichcalculationscanbedone.Wethinkofthisnotionasprecedinga
processconception,inwhichafunctionisthoughtofasaninput-outputmachine.Whatactually
happens,however,isthatanindividualwillbeginbybeingrestrictedtocertainspecifickindsof
formulas,reflectoncalculationsandstartthinkingaboutaprocess,gobacktoanactioninterpretation,
perhapswithmoresophisticatedformulas,furtherdevelopaprocessconceptionandsoon.Inother
words,theconstructionofthesevariousconceptionsofaparticularmathematicalideaismoreofa
dialecticthanalinearsequence.
APOSTheorycanbeuseddirectlyintheanalysisofdatabyaresearcher.Inveryfinegrained
analyses,theresearchercancomparethesuccessorfailureofstudentsonamathematicaltaskwiththe
specificmentalconstructionstheymayormaynothavemade.Ifthereappeartwostudentswhoagree
intheirperformanceuptoaveryspecificmathematicalpointandthenonestudentcantakeafurther
stepwhiletheothercannot,theresearchertriestoexplainthedifferencebypointingtomental
constructionsofactions,processes,objectsand/orschemasthattheformerstudentappearstohave
madebuttheotherhasnot.Thetheorythenmakestestablepredictionsthatifaparticularcollectionof
actions,processes,objectsandschemasareconstructedinacertainmannerbyastudent,thenthis
individualwilllikelybesuccessfulusingcertainmathematicalconceptsandincertainproblem
situations.Detaileddescriptions,referredtoasgeneticdecompositions,ofschemasintermsofthese
mentalconstructionsareawayoforganizinghypothesesabouthowlearningmathematicalconcepts
cantakeplace.Thesedescriptionsalsoprovidealanguagefortalkingaboutsuchhypotheses.
DevelopmentofAPOSTheory
APOSTheoryaroseoutofanattempttounderstandthemechanismofreflectiveabstraction,
introducedbyPiagettodescribethedevelopmentoflogicalthinkinginchildren,andextendthisidea
tomoreadvancedmathematicalconcepts(Dubinsky,1991a).Thisworkhasbeencarriedonbya
smallgroupofresearcherscalledaResearchinUndergraduateMathematicsEducationCommunity
(RUMEC)whohavebeencollaboratingonspecificresearchprojectsusingAPOSTheorywithina
4
broaderresearchandcurriculumdevelopmentframework.Theframeworkconsistsofessentiallythree
components:atheoreticalanalysisofacertainmathematicalconcept,thedevelopmentand
implementationofinstructionaltreatments(usingseveralnon-standardpedagogicalstrategiessuchas
cooperativelearningandconstructingmathematicalconceptsonacomputer)basedonthistheoretical
analysis,andthecollectionandanalysisofdatatotestandrefineboththeinitialtheoreticalanalysis
andtheinstruction.Thiscycleisrepeatedasoftenasnecessarytounderstandtheepistemologyofthe
conceptandtoobtaineffectivepedagogicalstrategiesforhelpingstudentslearnit.
ThetheoreticalanalysisisbasedinitiallyonthegeneralAPOStheoryandtheresearcher’s
understandingofthemathematicalconceptinquestion.Afteroneormorerepetitionsofthecycleand
revisions,itisalsobasedonthefine-grainedanalysesdescribedaboveofdataobtainedfromstudents
whoaretryingtolearnorwhohavelearnedtheconcept.Thetheoreticalanalysisproposes,intheform
ofageneticdecomposition,asetofmentalconstructionsthatastudentmightmakeinorderto
understandthemathematicalconceptbeingstudied.Thus,inthecaseoftheconceptofcosetsas
describedabove,theanalysisproposesthatthestudentshouldworkwithveryexplicitexamplesto
constructanactionconceptionofcoset;thenheorshecaninteriorizetheseactionstoformprocesses
inwhicha(left)cosetgHofanelementgofagroupGisimaginedasbeingformedbytheprocessof
iteratingthroughtheelementshofH,formingtheproductsgh,andcollectingtheminasetcalledgH;
andfinally,asaresultofapplyingactionsandprocessestoexamplesofcosets,thestudent
encapsulatestheprocessofcosetformationtothinkofcosetsasobjects.Foramoredetailed
descriptionoftheapplicationofthisapproachtocosetsandrelatedconcepts,seeAsiala,Dubinsky,et.
al.(1997).
Pedagogyisthendesignedtohelpthestudentsmakethesementalconstructionsandrelatethem
tothemathematicalconceptofcoset.Inourwork,wehaveusedcooperativelearningand
implementingmathematicalconceptsonthecomputerinaprogramminglanguagewhichsupports
manymathematicalconstructsinasyntaxverysimilartostandardmathematicalnotation.Thus
students,workingingroups,willexpresssimpleexamplesofcosetsonthecomputerasfollows.
Z20:={0..19};
op:=|(x,y)->x+y(mod20)|;
5
H:={0,4,8,12,16};
5H:={1,5,9,13,17};
Tointeriorizetheactionsrepresentedbythiscomputercode,thestudentswillconstructmore
complicatedexamplesofcosets,suchasthoseappearingingroupsofsymmetries.
Sn:={[a,b,c,d]:a,b,c,din{1,2,3,4}|#{a,b,c,d}=4};
op:=|(p,q)->[p(q(i)):iin[1..4]]|;
H:={[1,2,3,4],[2,1,3,4],[3,4,1,2],[4,3,2,1]};
p:=[4,3,2,1];
pH:={p.opq:qinH};
Thelaststep,toencapsulatethisprocessconceptionofcosetstothinkofthemasobjects,canbevery
difficultformanystudents.Computeractivitiestohelpthemmayincludeformingthesetofallcosets
ofasubgroup,countingthem,andpickingtwocosetstocomparetheircardinalitiesandfindtheir
intersections.Theseactionsaredonewithcodesuchasthefollowing.
SnModH:={{p.opq:qinH}:pinSn};
#SnModH;
L:=arb(SnModH);K:=arb(SnModH);#L=#K;LinterK;
Finally,thestudentswriteacomputerprogramthatconvertsthebinaryoperationopfromanoperation
onelementsofthegrouptosubsetsofthegroup.Thisstructureallowsthemtoconstructabinary
operation(cosetproduct)onthesetofallcosetsofasubgroupandbegintoinvestigatequotient
groups.
Itisimportanttonotethatinthispedagogicalapproach,almostalloftheprogramsarewritten
bythestudents.Onehypothesisthattheresearchinvestigatesisthat,whethercompletelysuccessfulor
not,thetaskofwritingappropriatecodeleadsstudentstomakethementalconstructionsofactions,
processes,objects,andschemasproposedbythetheory.Thecomputerworkisaccompaniedby
classroomdiscussionsthatgivethestudentsanopportunitytoreflectonwhattheyhavedoneinthe
computerlabandrelatethemtomathematicalconceptsandtheirpropertiesandrelationships.Once
theconceptsareinplaceintheirminds,thestudentsareassigned(inclass,homeworkand
examinations)manystandardexercisesandproblemsrelatedtocosets.
6
Afterthestudentshavebeenthroughsuchaninstructionaltreatment,quantitativeand
qualitativeinstrumentsaredesignedtodeterminethementalconceptstheymayhaveconstructedand
themathematicstheymayhavelearned.Thetheoreticalanalysispointstoquestionsresearchersmay
askintheprocessofdataanalysisandtheresultsofthisdataanalysisindicatesboththeextentto
whichtheinstructionhasbeeneffectiveandpossiblerevisionsinthegeneticdecomposition.
Thiswayofdoingresearchandcurriculumdevelopmentsimultaneouslyemphasizesboth
theoryandapplicationstoteachingpractice.
Refiningthetheory
Asnotedabove,thetheoryhelpsusanalyzedataandourattempttousethetheorytoexplain
thedatacanleadtochangesinthetheory.Thesechangescanbeoftwokinds.Usually,thegenetic
decompositionintheoriginaltheoreticalanalysisisrevisedandrefinedasaresultofthedata.Inrare
cases,itmaybenecessarytoenhancetheoveralltheory.Animportantexampleofsucharevisionis
theincorporationofthetriadconceptofPiagetandGarcia(1989)whichisleadingtoabetter
understandingoftheconstructionofschemas.Thisenhancementtothetheorywasintroducedin
Clark,et.al.(1997)wheretheyreportonstudents’understandingofthechainrule,andisbeingfurther
elaborateduponinthreecurrentstudies:sequencesofnumbers(Mathews,et.al.,inpreparation);the
chainruleanditsrelationtocompositionoffunctions(Cottrill,1999);andtherelationsbetweenthe
graphofafunctionandpropertiesofitsfirstandsecondderivatives(Baker,et.al.,submitted).Ineach
ofthesestudies,theunderstandingofschemasasdescribedabovewasnotadequatetoprovidea
satisfactoryexplanationofthedataandtheintroductionofthetriadhelpedtoelaborateadeeper
understandingofschemasandprovidebetterexplanationsofthedata.
Thetriadmechanismconsistsinthreestages,referredtoasIntra,Inter,andTrans,inthe
developmentoftheconnectionsanindividualcanmakebetweenparticularconstructswithinthe
schema,aswellasthecoherenceoftheseconnections.TheIntrastageofschemadevelopmentis
characterizedbyafocusonindividualactions,processes,andobjectsinisolationfromothercognitive
itemsofasimilarnature.Forexample,inthefunctionconcept,anindividualattheIntralevel,would
tendtofocusonasinglefunctionandthevariousactivitiesthatheorshecouldperformwithit.The
7
Interstageischaracterizedbytheconstructionofrelationshipsandtransformationsamongthese
cognitiveentities.Atthisstage,anindividualmaybegintogroupitemstogetherandevencallthemby
thesamename.Inthecaseoffunctions,theindividualmightthinkaboutaddingfunctions,composing
them,etc.andevenbegintothinkofalloftheseindividualoperationsasinstancesofthesamesortof
activity:transformationoffunctions.Finally,attheTransstagetheindividualconstructsanimplicit
orexplicitunderlyingstructurethroughwhichtherelationshipsdevelopedintheInterstageare
understoodandwhichgivestheschemaacoherencebywhichtheindividualcandecidewhatisinthe
scopeoftheschemaandwhatisnot.Forexample,anindividualattheTransstageforthefunction
conceptcouldconstructvarioussystemsoftransformationsoffunctionssuchasringsoffunctions,
infinitedimensionalvectorspacesoffunctions,togetherwiththeoperationsincludedinsuch
mathematicalstructures.
ApplyingtheAPOSTheory
IncludedwiththispaperisanannotatedbibliographyofresearchrelatedtoAPOSTheory,its
ongoingdevelopmentanditsuseinspecificresearchstudies.Thisresearchconcernsmathematical
conceptssuchas:functions;varioustopicsinabstractalgebraincludingbinaryoperations,groups,
subgroups,cosets,normalityandquotientgroups;topicsindiscretemathematicssuchasmathematical
induction,permutations,symmetries,existentialanduniversalquantifiers;topicsincalculusincluding
limits,thechainrule,graphicalunderstandingofthederivativeandinfinitesequencesofnumbers;
topicsinstatisticssuchasmean,standarddeviationandthecentrallimittheorem;elementarynumber
theorytopicssuchasplacevalueinbasennumbers,divisibility,multiplesandconversionofnumbers
fromonebasetoanother;andfractions.Inmostofthiswork,thecontextforthestudiesarecollegiate
levelmathematicstopicsandundergraduatestudents.Inthecaseofthenumbertheorystudies,the
researchersexaminetheunderstandingofpre-collegemathematicsconceptsbycollegestudents
preparingtobeteachers.Finally,somestudiessuchasthatoffractions,showthattheAPOSTheory,
developedfor“advanced”mathematicalthinking,isalsoausefultoolinstudyingstudents’
understandingofmorebasicmathematicalconcepts.
8
Thetotalityofthisbodyofwork,muchofitdonebyRUMECmembersinvolvedindeveloping
thetheory,butanincreasingamountdonebyindividualresearchershavingnoconnectionwith
RUMECortheconstructionofthetheory,suggeststhatAPOSTheoryisatoolthatcanbeused
objectivelytoexplainstudentdifficultieswithabroadrangeofmathematicalconceptsandtosuggest
waysthatstudentscanlearntheseconcepts.APOSTheorycanpointustowardspedagogicalstrategies
thatleadtomarkedimprovementinstudentlearningofcomplexorabstractmathematicalconceptsand
students’useoftheseconceptstoprovetheorems,provideexamples,andsolveproblems.Data
supportingthisassertioncanbefoundinthepaperslistedinthebibliography.
UsingtheAPOSTheorytodevelopacommunityofresearchers
Atthisstageinthedevelopmentofresearchinundergraduatemathematicseducation,thereis
neitherasufficientlylargenumberofresearchersnorenoughgraduateschoolprogramstotrainnew
researchers.Otherapproaches,suchasexperiencedandnoviceresearchersworkingtogetherinteams
onspecificresearchproblems,needtobeemployedatleastonatemporarybasis.RUMECisone
exampleofaresearchcommunitythathasutilizedthisapproachintrainingnewresearchers.
Inaddition,aspecifictheorycanbeusedtounifyandfocustheworkofsuchgroups.The
initialgroupofresearchersinRUMEC,about30total,madeadecisiontofocustheirresearchwork
aroundtheAPOSTheory.Thiswasnotforthepurposeofestablishingdogmaorcreatingaclosed
researchcommunity,butratheritwasadecisionbasedoncurrentinterestsandneedsofthegroupof
researchers.
RUMECwasformedbyacombinationofestablishedandbeginningresearchersin
mathematicseducation.ThusoneimportantroleofRUMECwasthementoringofthesenew
researchers.HavingasingletheoreticalperspectiveinwhichtheworkofRUMECwasinitially
groundedwasbeneficialforthosejustbeginninginthisarea.AtthemeetingsofRUMEC,discussions
couldfocusnotonlyonthedetailsoftheindividualprojectsastheydeveloped,butalsoonthegeneral
theoryunderlyingallofthework.Inaddition,thegroup’sgeneralinterestinthistheoryandfrequent
discussionsaboutitinthecontextofactiveresearchprojectshasledtogrowthinthetheoryitself.
Thiswasthecase,forexample,inthedevelopmentofthetriadasatoolforunderstandingschemas.
9
Astheworkofthisgroupmatures,individualsarebeginningtouseothertheoreticalperspectivesand
othermodesofdoingresearch.
Summary
Inthispaper,wehavementionedsixwaysinwhichatheorycancontributetoresearchandwe
suggestthatthislistcanbeusedascriteriaforevaluatingatheory.Wehavedescribedhowonesuch
perspective,APOSTheoryisbeingused,inanorganizedway,bymembersofRUMECandothersto
conductresearchanddevelopcurriculum.Wehaveshownhowobservingstudents’successinmaking
ornotmakingmentalconstructionsproposedbythetheoryandusingsuchobservationstoanalyzedata
canorganizeourthinkingaboutlearningmathematicalconcepts,provideexplanationsofstudent
difficultiesandpredictsuccessorfailureinunderstandingamathematicalconcept.Thereisawide
rangeofmathematicalconceptstowhichAPOSTheorycanandhasbeenappliedandthistheoryis
usedasalanguageforcommunicationofideasaboutlearning.Wehavealsoseenhowthetheoryis
groundedindata,andhasbeenusedasavehicleforbuildingacommunityofresearchers.Yetitsuse
isnotrestrictedtomembersofthatcommunity.Finally,weprovideanannotatedbibliographywhich
presentsfurtherdetailsaboutthistheoryanditsuseinresearchinundergraduatemathematics
education.
10
AnAnnotatedBibliographyofworks
whichdeveloporutilizeAPOSTheory
I.Arnon.Teachingfractionsinelementaryschoolusingthesoftware“FractionsasEquivalence
Classes”oftheCentreforEducationalTechnology,TheNinthAnnualConferenceforComputersin
Education,TheIsraeliOrganizationforComputersinEducation,BookofAbstracts,Tel-Aviv,Israel,
p.48,1992.(InHebrew).
I.Arnon,R.NirenburgandM.Sukenik.Teachingdecimalnumbersusingconcreteobjects,The
SecondConferenceoftheAssociationfortheAdvancementoftheMathematicalEducationinIsrael,
BookofAbstracts,Jerusalem,Israel,p.19,1995.(InHebrew).
I.Arnon.Refiningtheuseofconcreteobjectsforteachingmathematicstochildrenattheageof
concreteoperations,TheThirdConferenceoftheAssociationfortheAdvancementoftheMathematical
EducationinIsrael,BookofAbstracts,Jerusalem,Israel,p.69,1996.(InHebrew).
I.Arnon.Inthemind’seye:Howchildrendevelopmathematicalconcepts–extendingPiaget's
theory.Doctoraldissertation,SchoolofEducation,HaifaUniversity,1998a.
I.Arnon.Similarstagesinthedevelopmentsoftheconceptofrationalnumberandtheconceptof
decimalnumber,andpossiblerelationsbetweentheirdevelopments,TheFifthConferenceofthe
AssociationfortheAdvancementoftheMathematicalEducationinIsrael,BookofAbstracts.Be’er-
Tuvia,Israel,p.42,1998b.(InHebrew).
ThestudiesbyArnonandhercolleagueslistedabovedealwiththedevelopmentof
mathematicalconceptsbyelementaryschoolchildren.Havingcreatedaframeworkthat
combinesAPOStheory,Nesher’stheoryonLearningSystems,andYerushalmy’sideasof
multi-representation,sheinvestigatestheintroductionofmathematicalconceptsasconcrete
actionsversustheirintroductionasconcreteobjects.Sheestablishesdevelopmentalpathsfor
certainfraction-concepts.Shefindsthatstudentstowhomthefractionswereintroducedas
concreteactionsprogressedbetteralongthesepathsthanstudentstowhomthefractionswere
introducedasconcreteobjects.Inaddition,thefindingsestablishthefollowingstageinthe
developmentofconcreteactionsintoabstractobjects:afterabandoningtheconcretematerials,
andbeforeachievingabstractlevels,childrenperformtheconcreteactionsintheirimagination.
ThiscorrespondstotheinteriorizationofAPOStheory.
M.Artigue,Ense?anzayaprendizajedelanálisiselemental:?quésepuedeaprenderdelas
investigacionesdidácticasyloscambioscurriculares?RevistaLatinoamericanadeInvestigaciónen
MatiemáticaEducativa,1,1,40-55,1998.
Inthefirstpartofthispaper,theauthordiscussesanumberofstudentdifficultiesandtriesto
explainthemusingvarioustheoriesoflearningincludingAPOSTheory.Students’
unwillingnesstoacceptthat0.999…isequalto1isexplained,forexample,byinterpretingthe
formerasaprocess,thelatterasanobjectsothatthetwocannotbeseenasequaluntilthe
studentisabletoencapsulatetheprocesswhichisageneraldifficulty.Inthesecondpartofthe
paper,theauthordiscussesthemeasuresthathavebeentakeninFranceduringthe20th
Centurytoovercomethesedifficulties.
11
M.Asiala,A.Brown,D.DeVries,E.Dubinsky,D.MathewsandK.Thomas.Aframeworkfor
researchandcurriculumdevelopmentinundergraduatemathematicseducation,ResearchinCollegiate
MathematicsEducationII,CBMSIssuesinMathematicsEducation,6,1-32,1996.
Theauthorsdetailaresearchframeworkwiththreecomponentsandgiveexamplesofits
application.Theframeworkutilizesqualitativemethodsforresearchandisbasedonavery
specifictheoreticalperspectivethatwasdevelopedthroughattemptstounderstandtheideasof
Piagetconcerningreflectiveabstractionandreconstructtheminthecontextofcollegelevel
mathematics.Forthefirstcomponent,thetheoreticalanalysis,theauthorspresenttheAPOS
theory.Forthesecondcomponent,theauthorsdescribespecificinstructionaltreatments,
includingtheACEteachingcycle(activities,classdiscussion,andexercises),cooperative
learning,andtheuseoftheprogramminglanguageISETL.Thefinalcomponentconsistsof
datacollection
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南工程職業(yè)學(xué)院《流行音樂(lè)器樂(lè)演奏(1)》2023-2024學(xué)年第一學(xué)期期末試卷
- 新媒體時(shí)代下信息傳播速度與范圍
- 公司年度總結(jié)與展望模板
- 市場(chǎng)營(yíng)銷成果報(bào)告模板
- 業(yè)務(wù)操作-房地產(chǎn)經(jīng)紀(jì)人《業(yè)務(wù)操作》模擬試卷2
- 房地產(chǎn)交易制度政策-《房地產(chǎn)基本制度與政策》預(yù)測(cè)試卷3
- 醫(yī)生辭職報(bào)告怎么寫
- 二零二五年度軌道交通信號(hào)系統(tǒng)安裝合同6篇
- 山東省菏澤市2024-2025學(xué)年高二上學(xué)期期末教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題參考答案
- 2024-2025學(xué)年四川省瀘州市老窖天府中學(xué)高一(上)期末數(shù)學(xué)試卷(含答案)
- 人大提案格式范文
- 《那一刻我長(zhǎng)大了》五年級(jí)語(yǔ)文下冊(cè)作文12篇
- 南充化工碼頭管網(wǎng)施工方案(初稿)
- 2023年消防接警員崗位理論知識(shí)考試參考題庫(kù)(濃縮500題)
- GB/T 30285-2013信息安全技術(shù)災(zāi)難恢復(fù)中心建設(shè)與運(yùn)維管理規(guī)范
- 魯濱遜漂流記閱讀任務(wù)單
- 第一章 運(yùn)營(yíng)管理概論1
- 主體結(jié)構(gòu)驗(yàn)收匯報(bào)材料T圖文并茂
- 管理學(xué)原理(南大馬工程)
- 過(guò)一個(gè)有意義的寒假課件
- 施工現(xiàn)場(chǎng)裝配式集裝箱活動(dòng)板房驗(yàn)收表
評(píng)論
0/150
提交評(píng)論