![用樣本的頻率分布估計總體分布_第1頁](http://file4.renrendoc.com/view/615d838fddb4c733ac34fd993b407573/615d838fddb4c733ac34fd993b4075731.gif)
![用樣本的頻率分布估計總體分布_第2頁](http://file4.renrendoc.com/view/615d838fddb4c733ac34fd993b407573/615d838fddb4c733ac34fd993b4075732.gif)
![用樣本的頻率分布估計總體分布_第3頁](http://file4.renrendoc.com/view/615d838fddb4c733ac34fd993b407573/615d838fddb4c733ac34fd993b4075733.gif)
![用樣本的頻率分布估計總體分布_第4頁](http://file4.renrendoc.com/view/615d838fddb4c733ac34fd993b407573/615d838fddb4c733ac34fd993b4075734.gif)
![用樣本的頻率分布估計總體分布_第5頁](http://file4.renrendoc.com/view/615d838fddb4c733ac34fd993b407573/615d838fddb4c733ac34fd993b4075735.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
用樣本的頻率分布估計總體分布教學目標:(1)通過實例體會分布的意義和作用。(2)在表示樣本數(shù)據(jù)的過程中,學會列頻率分布表,畫頻率分布直方圖、頻率折線圖和莖葉圖。(3)通過實例體會頻率分布直方圖、頻率折線圖、莖葉圖的各自特征,從而恰當?shù)剡x擇上述方法分析樣本的分布,準確地做出總體估計?!緞?chuàng)設情境】在NBA的2004賽季中,甲、乙兩名籃球運動員每場比賽得分的原始記錄如下:甲運動員得分:12,15,20,25,31,31,36,36,37,39,44,49,50乙運動員得分:8,13,14,16,23,26,28,38,39,51,31,29,33請問從上面的數(shù)據(jù)中你能否看出甲,乙兩名運動員哪一位發(fā)揮比較穩(wěn)定?如何根據(jù)這些數(shù)據(jù)作出正確的判斷呢?這就是我們這堂課要研究、學習的主要內(nèi)容——用樣本的頻率分布估計總體分布?!咎骄啃轮俊继骄俊絇55我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出,某市政府為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理,即確定一個居民月用水量標準a,用水量不超過a的部分按平價收費,超出a的部分按議價收費。如果希望大部分居民的日常生活不受影響,那么標準a定為多少比較合理呢?你認為,為了了較為合理地確定出這個標準,需要做哪些工作?(讓學生展開討論)為了制定一個較為合理的標準a,必須先了解全市居民日常用水量的分布情況,比如月均用水量在哪個范圍的居民最多,他們占全市居民的百分比情況等。因此采用抽樣調(diào)查的方式,通過分析樣本數(shù)據(jù)來估計全市居民用水量的分布情況。(如課本P)56分析數(shù)據(jù)的一種基本方法是用圖將它們畫出來,或者用緊湊的表格改變數(shù)據(jù)的排列方式,作圖可以達到兩個目的,一是從數(shù)據(jù)中提取信息,二是利用圖形傳遞信息。表格則是通過改變數(shù)據(jù)的構成形式,為我們提供解釋數(shù)據(jù)的新方式。下面我們學習的頻率分布表和頻率分布圖,則是從各個小組數(shù)據(jù)在樣本容量中所占比例大小的角度,來表示數(shù)據(jù)分布的規(guī)律??梢宰屛覀兏宄目吹秸麄€樣本數(shù)據(jù)的頻率分布情況?!匆弧殿l率分布的概念:頻率分布是指一個樣本數(shù)據(jù)在各個小范圍內(nèi)所占比例的大小。一般用頻率分布直方圖反映樣本的頻率分布。其一般步驟為:(1) 計算一組數(shù)據(jù)中最大值與最小值的差,即求極差(2)決定組距與組數(shù)(3) 將數(shù)據(jù)分組(1+3.3lgn)(4)列頻率分布表(5)畫頻率分布直方圖以課本P制定居民用水標準問題為例,經(jīng)過以上幾個步驟畫出頻率分布直方圖。56頻率分布直方圖的特征:從頻率分布直方圖可以清楚的看出數(shù)據(jù)分布的總體趨勢;從頻率分布直方圖得不出原始的數(shù)據(jù)內(nèi)容,把數(shù)據(jù)表示成直方圖后,原有的具體數(shù)據(jù)信息就被抹掉了?!继骄俊剑和瑯右唤M數(shù)據(jù),如果組距不同,橫軸、縱軸的單位不同,得到的圖和形狀也會不同。不同的形狀給人以不同的印象,這種印象有時會影響我們對總體的判斷,分別以0.1和1為組距重新作圖,然后談談你對圖的印象?接下來請同學們思考下面這個問題:〖思考〗:如果當?shù)卣M?5%以上的居民每月的用水量不超出標準,根據(jù)頻率分布表2-2和頻率分布直方圖2.2-1,(見課本P7)你能對制定月用水量標準提出建議嗎?〈二〉頻率分布折線圖、總體密度曲線1.頻率分布折線圖的定義:連接頻率分布直方圖中各小長方形上端的中點,就得到頻率分布折線圖。2.總體密度曲線的定義:在樣本頻率分布直方圖中,相應的頻率折線圖會越來越接近于一條光滑曲線,統(tǒng)計中稱這條光滑曲線為總體密度曲線。它能夠精確地反映了總體在各個范圍內(nèi)取值的百分比,它能給我們提供更加精細的信息。〖思考〗:對于任何一個總體,它的密度曲線是不是一定存在?為什么?2?對于任何一個總體,它的密度曲線是否可以被非常準確地畫出來?為什么?實際上,盡管有些總體密度曲線是客觀存在的,但一般很難想函數(shù)圖象那樣準確地畫出來,我們只能用樣本的頻率分布對它進行估計,一般來說,樣本容量越大,這種估計就越精確.〈三〉莖葉圖莖葉圖的概念:當數(shù)據(jù)是兩位有效數(shù)字時,用中間的數(shù)字表示十位數(shù),即第一個有效數(shù)字,兩邊的數(shù)字表示個位數(shù),即第二個有效數(shù)字,它的中間部分像植物的莖,兩邊部分像植物莖上長出來的葉子,因此通常把這樣的圖叫做莖葉圖。(見課本P例子)61莖葉圖的特征:(1) 用莖葉圖表示數(shù)據(jù)有兩個優(yōu)點:一是從統(tǒng)計圖上沒有原始數(shù)據(jù)信息的損失,所有數(shù)據(jù)信息都可以從莖葉圖中得到;二是莖葉圖中的數(shù)據(jù)可以隨時記錄,隨時添加,方便記錄與表示。(2) 莖葉圖只便于表示兩位有效數(shù)字的數(shù)據(jù),而且莖葉圖只方便記錄兩組的數(shù)據(jù),兩個以上的數(shù)據(jù)雖然能夠記錄,但是沒有表示兩個記錄那么直觀,清晰?!纠}精析】〖例1〗:下表給出了某校500名12歲男孩中用隨機抽樣得出的120人的身高(單位cm)區(qū)間界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)人數(shù)5810223320區(qū)間界限[146,150)[150,154)[154,158)人數(shù)1165⑴列出樣本頻率分布表;(2)—畫出頻率分布直方圖;(3)估計身高小于134cm的人數(shù)占總?cè)藬?shù)的百分比。分析:根據(jù)樣本頻率分布表、頻率分布直方圖的一般步驟解題。解:(1)樣本頻率分布表如下:分組頻數(shù)頻率[122126)50.04[126,130)80.07[130-134)100.08[134.138)220.18[138.142)330.28[142,146)200.17[146150)110.09[150154)60.05[154,158)50.04合計12012)其頻率分布直方圖如下:由樣本頻率分布表可知身高小于134cm的男孩出現(xiàn)的頻率為0.04+0.07+0.08=0.19,所以我們估計身高小于134cm的人數(shù)占總?cè)藬?shù)的19%.〖例2〗:為了了解高一學生的體能情況,某校抽取部分學生進行一分鐘跳繩次數(shù)次測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.第二小組的頻率是多少?樣本容量是多少?若次數(shù)在〖例2〗:為了了解高一學生的體能情況,某校抽取部分學生進行一分鐘跳繩次數(shù)次測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.第二小組的頻率是多少?樣本容量是多少?若次數(shù)在110以上(含110次)為達標,試估計該學校全體高一學生的達標率是多少?在這次測試中,學生跳繩次數(shù)的中位數(shù)落在哪個小組內(nèi)?請說明理由。分析:在頻率分布直方圖中,各小長水頻率/組距0.0360.0320.0280.0240.0200.0160.0120.0080.00490 100 110 120 130 140 150次數(shù)方形的面積等于相應各組的頻率,小長方形的高與頻數(shù)成正比,各組頻數(shù)之和等于樣本容量,頻率之和等于1。解:(1)由于頻率分布直方圖以面積的形式反映了數(shù)據(jù)落在各小組內(nèi)的頻率大小,因此第二小組的頻率為:2因此第二小組的頻率為:2+4+17+15+9+3-0'08又因為頻率=第二小組頻數(shù)樣本容量所以樣本容量又因為頻率=第二小組頻數(shù)樣本容量所以樣本容量=第二小組頻數(shù)第二小組頻率120.08=1502)由圖可估計該學校高一學生的達標率約為x100%=88%17+15+x100%=88%2+4+17+15+9+33)由已知可得各小組的頻數(shù)依次為6,12,51,45,27,9,所以前三組的頻數(shù)之和為69,前四組的頻數(shù)之和為114,所以跳繩次數(shù)的中位數(shù)落在第四小組內(nèi)?!菊n堂小結(jié)】總體分布指的是總體取值的頻率分布規(guī)律,由于總體分布不易知道,因此我們往往用樣本的頻率分布去估計總體的分布??傮w的分布分兩種情況:當總體中的個體取值很少時,用莖葉圖估計總體的分布;當總體中的個體取值較多時,將樣本數(shù)據(jù)恰當分組,用各組的頻率分布描述總體的分布,方法是用頻率用分布樣表或頻本率分的布直數(shù)方圖字。特征估計總體的數(shù)字特征教學目標:(1)正確理解樣本數(shù)據(jù)標準差的意義和作用,學會計算數(shù)據(jù)的標準差。(2)能根據(jù)實際問題的需要合理地選取樣本,從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標準差),并做出合理的解釋。(3)會用樣本的基本數(shù)字特征估計總體的基本數(shù)字特征。(4)形成對數(shù)據(jù)處理過程進行初步評價的意識?!緞?chuàng)設情境】在一次射擊比賽中,甲、乙兩名運動員各射擊10次,命中環(huán)數(shù)如下:甲運動員:7,8,6,8,6,5,8,10,7,4;乙運動員:9,5,7,8,7,6,8,6,7,7.觀察上述樣本數(shù)據(jù),你能判斷哪個運動員發(fā)揮的更穩(wěn)定些嗎?為了從整體上更好地把握總體的規(guī)律,我們要通過樣本的數(shù)據(jù)對總體的數(shù)字特征進行研究?!脴颖镜臄?shù)字特征估計總體的數(shù)字特征?!咎骄啃轮浚家唬尽⒈姅?shù)、中位數(shù)、平均數(shù)〖探究〗P62(1) 怎樣將各個樣本數(shù)據(jù)匯總為一個數(shù)值,并使它成為樣本數(shù)據(jù)的“中心點”?(2) 能否用一個數(shù)值來描寫樣本數(shù)據(jù)的離散程度?(讓學生回憶初中所學的一些統(tǒng)計知識,思考后展開討論)初中我們曾經(jīng)學過眾數(shù),中位數(shù),平均數(shù)等各種數(shù)字特征,應當說,這些數(shù)字都能夠為我們提供關于樣本數(shù)據(jù)的特征信息。例如前面一節(jié)在調(diào)查100位居民的月均用水量的問題中,從這些樣本數(shù)據(jù)的頻率分布直方圖可以看出,月均用水量的眾數(shù)是2.251(最高的矩形的中點)它告訴我們,該市的月均用水量為2.251的居民數(shù)比月均用水量為其他值的居民數(shù)多,但它并沒有告訴我們到底多多少?!继釂枴剑赫埓蠹曳氐秸n本第56頁看看原來抽樣的數(shù)據(jù),有沒有2.25這個數(shù)值呢?根據(jù)眾數(shù)的定義,2.25怎么會是眾數(shù)呢?為什么?分析:這是因為樣本數(shù)據(jù)的頻率分布直方圖把原始的一些數(shù)據(jù)給遺失的原因,而2.25是由樣本數(shù)據(jù)的頻率分布直方圖得來的,所以存在一些偏差?!继釂枴剑耗敲慈绾螐念l率分布直方圖中估計中位數(shù)呢?分析:在樣本數(shù)據(jù)中,有50%的個體小于或等于中位數(shù),也有50%的個體大于或等于中位數(shù)。因此,在頻率分布直方圖中,矩形的面積大小正好表示頻率的大小,即中位數(shù)左邊和右邊的直方圖的面積應該相等。由此可以估計出中位數(shù)的值為2.02。(圖略見課本63頁圖2.2-6)〖思考〗:2.02這個中位數(shù)的估計值,與樣本的中位數(shù)值2.0不一樣,你能解釋其中的原因嗎?(原因同上:樣本數(shù)據(jù)的頻率分布直方圖把原始的一些數(shù)據(jù)給遺失了)(課本63頁圖2.2-6)顯示,大部分居民的月均用水量在中部(2.021左右),但是也有少數(shù)居民的月均用水量特別高,顯然,對這部分居民的用水量作出限制是非常合理的。〖思考〗:中位數(shù)不受少數(shù)幾個極端值的影響,這在某些情況下是一個優(yōu)點,但是它對極端值的不敏感有時也會成為缺點,你能舉例說明嗎?(讓學生討論,并舉例)<二>、標準差、方差標準差平均數(shù)為我們提供了樣本數(shù)據(jù)的重要信息,可是,有時平均數(shù)也會使我們作出對總體的片面判斷。某地區(qū)的統(tǒng)計顯示,該地區(qū)的中學生的平均身高為176cm,給我們的印象是該地區(qū)的中學生生長發(fā)育好,身高較高。但是,假如這個平均數(shù)是從五十萬名中學生抽出的五十名身高較高的學生計算出來的話,那么,這個平均數(shù)就不能代表該地區(qū)所有中學生的身體素質(zhì)。因此,只有平均數(shù)難以概括樣本數(shù)據(jù)的實際狀態(tài)。例如,在一次射擊選拔比賽中,甲、乙兩名運動員各射擊10次,命中環(huán)數(shù)如下:甲運動員:7, 8, 6, 8, 6, 5, 8,10,7,4;乙運動員:9, 5, 7, 8, 7, 6, 8,6,7,7.觀察上述樣本數(shù)據(jù),你能判斷哪個運動員發(fā)揮的更穩(wěn)定些嗎?如果你是教練,選哪位選手去參加正式比賽?我們知道,%田=7, x乙=7。甲乙兩個人射擊的平均成績是一樣的。那么,是否兩個人就沒有水平差距呢?(觀察P66圖2.2-8)直觀上看,還是有差異的。很明顯,甲的成績比較分散,乙的成績相對集中,因此我們從另外的角度來考察這兩組數(shù)據(jù)??疾鞓颖緮?shù)據(jù)的分散程度的大小,最常用的統(tǒng)計量是標準差。標準差是樣本數(shù)據(jù)到平均數(shù)的一種平均距離,一般用s表示。樣本數(shù)據(jù)X1X2?…,X的標準差的算法:1、算出樣本數(shù)據(jù)的平均數(shù)X。2、算出每個樣本數(shù)1,2,n據(jù)與樣本數(shù)據(jù)平均數(shù)的差:x-X(i二1,2,?-n)3、算出(2)中兀一X(心12…n)的平ii方。4、算出(3)中n個平方數(shù)的平均數(shù),即為樣本方差。5、算出(4)中平均數(shù)的算術平方根,,即為樣本標準差。其計算公式為:s— [(X—X)2+(X—X)2+?…+(X—X)2]n1 2 n顯然,標準差較大,數(shù)據(jù)的離散程度較大;標準差較小,數(shù)據(jù)的離散程度較小。〖提問〗標準差的取值范圍是什么?標準差為0的樣本數(shù)據(jù)有什么特點?從標準差的定義和計算公式都可以得出:s-0。當s—0時,意味著所有的樣本數(shù)據(jù)都等于樣本平均數(shù)。(在課堂上,如果條件允許的話,可以給學生簡單的介紹一下利用計算機來計算標準差的方法。)方差從數(shù)學的角度考慮,人們有時用標準差的平方s2(即方差)來代替標準差,作為測量樣本數(shù)據(jù)分散程度的工具:1s2 — [(X—X)2+ (X
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024中國智慧城市AIOT應用
- 實習面試自我介紹范文(15篇)
- 關注民生加強公共安全構建和諧社會
- 市場方案策劃范文15篇
- 初級會計經(jīng)濟法基礎-初級會計《經(jīng)濟法基礎》模擬試卷320
- 二零二五年度房地產(chǎn)投資基金投資居間協(xié)議3篇
- 排煙基礎知識
- 2025版高校食堂食品原料集中采購協(xié)議2篇
- 基于手部姿態(tài)估計和手形重建的虛擬手構建及在沉浸式實驗室的應用
- 二零二五年度國有企業(yè)并購融資擔保服務合同3篇
- 2025年度高端商務車輛聘用司機勞動合同模板(專業(yè)版)4篇
- GB/T 45107-2024表土剝離及其再利用技術要求
- 《古希臘文明》課件
- 2025年高考語文作文滿分范文6篇
- 零售業(yè)連鎖加盟合同
- 維吾爾醫(yī)優(yōu)勢病種
- 全國教學設計大賽一等獎英語七年級上冊(人教2024年新編)《Unit 2 Were Family!》單元教學設計
- 【獨家揭秘】2024年企業(yè)微信年費全解析:9大行業(yè)收費標準一覽
- 1-1 擁抱夢想:就這樣埋下一顆種子【2022中考作文最熱8主題押題24道 構思點撥+范文點評】
- 職業(yè)暴露與防護
- 酒店行業(yè)客源渠道分析
評論
0/150
提交評論