




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第初一到初三數(shù)學(xué)知識點總結(jié)匯總4篇初一到初三數(shù)學(xué)知識點總結(jié)匯總4篇
科學(xué)是現(xiàn)代最主要的知識形式。技術(shù)是將科學(xué)應(yīng)用于生產(chǎn)和社會生活的重要手段。語言是知識傳遞和溝通的主要工具。下面就讓小編給大家?guī)沓跻坏匠跞龜?shù)學(xué)知識點總結(jié),希望大家喜歡!
初一到初三數(shù)學(xué)知識點總結(jié)1
一、有理數(shù)加減法
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。
絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
2.互為相反數(shù)的兩個數(shù)相加得0。
3.一個數(shù)同0相加,仍得這個數(shù)。
4.減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
二、乘除法法則
1.兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。0乘以任何數(shù),都得0。
2.幾個不為0的數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)確定,負(fù)因數(shù)的個數(shù)為偶數(shù)時,積為正;負(fù)因數(shù)的個數(shù)為奇數(shù)時,積為負(fù)。
3.兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。
4.有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。
5.除以一個不等于0的數(shù)等于乘以這個數(shù)的倒數(shù)。
三、乘方
乘方定義:求n個相同因數(shù)的積的運算,叫做乘方。
底數(shù)是a,指數(shù)是n,冪是乘方的結(jié)果;讀作:的n次方或的n次冪。
負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。
四、運算律及混合運算
1.加法交換律:a+b=b+a
1.加法交換律:a+b=b+a
2.乘法交換律:a·b=b·a
3.加法結(jié)合律:a+(b+c)=(a+b)+c
4.乘法結(jié)合律:a·(b·c)=(a·b)·c
5.乘法分配律:a·(b+c)=ab+ac
6.有理數(shù)混合運算順序:先乘方;再乘除;最后算加減。
7.有括號,先算括號內(nèi)的運算,按小括號、中括號、大括號依次進(jìn)行。
8.同級運算,從左到右進(jìn)行。
五、近似數(shù)
1.近似數(shù):在一定程度上反映被考察量的大小,能說明實際問題的意義,與準(zhǔn)確數(shù)非常地接近,像這樣的數(shù)我們稱它為近似數(shù)。
2.近似數(shù)的分類
(1)具體近似數(shù)(如30.2、58.0…)
(2)帶單位近似數(shù)(如2.4萬…)
(3)科學(xué)記數(shù)法
3.精確度:用位數(shù)較少的近似數(shù)替代位數(shù)較多或位數(shù)無限的數(shù),有一個近似程度的問題,這個近似程度就是精確度。四舍五入到哪一位,就說精確到哪一位(看精確度得到原數(shù)中去看在哪一位上,如:2.4萬精確到千位,而非十分位,因為2.4萬就是24000,4在千位上)。
4.有效數(shù)字:對于一個不為0的近似數(shù),從左邊第一個不為0的數(shù)字起,到末尾數(shù)止,所有數(shù)字都是這個近似數(shù)的有效數(shù)字。
求近似數(shù)要求保留n個有效數(shù)字時,第n+1個有效數(shù)字作四舍五入處理。
例:0.0109有三個有效數(shù)字1、0、9,要求保留2個有效數(shù)字時,0.0109的第三個有效數(shù)字9四舍五入,變?yōu)?.0110,保留兩個有效數(shù)字1、1后求出近似數(shù)0.0109≈0.011。
初一到初三數(shù)學(xué)知識點總結(jié)2
一、方程的有關(guān)概念
1.方程:含有未知數(shù)的等式就叫做方程。
2.一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。
3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解。
注:
(1)方程的解和解方程是不同的概念,方程的解實質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程。
(2)方程的解的檢驗方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論。
二、等式的性質(zhì)
(1)等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等。用式子形式表示為:如果a=b,那么a±c=b±c
(2)等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc
三、移項法則:
把等式一邊的某項變號后移到另一邊,叫做移項。
四、去括號法則
1.括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同
2.括號外的因數(shù)是負(fù)數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變
五、解方程的一般步驟
1.去分母(方程兩邊同乘各分母的最小公倍數(shù))
2.去括號(按去括號法則和分配律)
3.移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)
4.合并(把方程化成ax=b(a≠0)形式)
5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=ba)。
六、用方程思想解決實際問題的一般步驟
1.審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系。
2.設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)。
3.列:根據(jù)題意列方程。
4.解:解出所列方程。
5.檢:檢驗所求的解是否符合題意。
6.答:寫出答案(有單位要注明答案)。
初一到初三數(shù)學(xué)知識點總結(jié)3
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三角形的分類
3.三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
6.角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7.高線、中線、角平分線的意義和做法
8.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。
9.三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°
推論1直角三角形的兩個銳角互余;
推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和;
推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的內(nèi)角和是外角和的一半。
10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11.三角形外角的性質(zhì)
(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
(2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;
(3)三角形的一個外角大于與它不相鄰的任一內(nèi)角;
(4)三角形的外角和是360°。
12.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
13.多邊形的`內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
15.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
17.正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。
18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
19.公式與性質(zhì)
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
20.多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
(2)多邊形的每個內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180°
21.多邊形對角線的條數(shù):
(1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。
(2)n邊形共有n(n-3)/2條對角線。
初一到初三數(shù)學(xué)知識點總結(jié)4
1、含有兩個數(shù)的詞來表示一個確定個位置,其中兩個數(shù)各自表示不同的意義,我們把這種有順序的兩個數(shù)組成的數(shù)對,叫做有序數(shù)對,記作(a,b)
2、數(shù)軸上的點可以用一個數(shù)來表示,這個數(shù)叫做這個點的坐標(biāo)。
3、在平面內(nèi)畫兩條互相垂直,并且有公共原點的數(shù)軸。這樣我們就說在平面上建立了平面直角坐標(biāo)系,簡稱直角坐標(biāo)系。平面直角坐標(biāo)系有兩個坐標(biāo)軸,其中橫軸為X軸,取向右方向為正方向;縱軸為Y軸,取向上為正方向。坐標(biāo)系所在平面叫做坐標(biāo)平面,兩坐標(biāo)軸的公共原點叫做平面直角坐標(biāo)系的原點。X軸和Y軸把坐標(biāo)平面分成四個象限,右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數(shù)軸為界,橫軸、縱軸上的點及原點不屬于任何象限。一般情況下,x軸和y軸取相同的單位長度。
4、特殊位置的點的坐標(biāo)的特點:
(1)x軸上的點的縱坐標(biāo)為零;y軸上的點的橫坐標(biāo)為零。
(2)第一、三象限角平分線上的點橫、縱坐標(biāo)相等;第二、四象限角平分線上的點橫、縱坐標(biāo)互為相反數(shù)。
(3)在任意的兩點中,如果兩點的橫坐標(biāo)相同,則兩點的連線平行于縱軸;如果兩點的縱坐標(biāo)相同,則兩點的連線平行于橫軸。
5、點到軸及原點的距離
點到x軸的距離為|y|;點到y(tǒng)軸的距離為|x|;點到原點的距離為x的平方加y的平方再開根號;
在平面直角坐標(biāo)系中對稱點的特點:
1、關(guān)于x成軸對稱的點的坐標(biāo),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù)。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園外賣創(chuàng)業(yè)計劃書課件
- 防潮防震雙重包裝采購驗收標(biāo)準(zhǔn)2025
- 日常維修安全培訓(xùn)
- 2025年03月齊齊哈爾“市委書記進(jìn)校園”民辦醫(yī)院公開招聘筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 神經(jīng)外科護(hù)理規(guī)范
- 防詐騙小學(xué)課件教學(xué)
- 教師安全培訓(xùn)總結(jié)
- 旅游研學(xué)攻略路線
- 2025年03月國家審計署審計干部教育學(xué)院公開招聘國內(nèi)高等學(xué)校應(yīng)屆畢業(yè)生2人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025年03月臨海市事業(yè)單位公開招聘76人【編制】筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2023年安全員批評與自我批評
- 檢驗科標(biāo)本運送培訓(xùn)
- 初中作文指導(dǎo)-景物描寫(課件)
- 秋 輕合金 鋁合金相圖及合金相課件
- 6.3.1 平面向量基本定理 課件(共15張PPT)
- 安全安全檢查表分析(SCL)記錄表(設(shè)備、設(shè)施)
- 城市濕地公園設(shè)計導(dǎo)則2017
- 小學(xué)巡課記錄表
- 消防管道隱蔽工程驗收報審表(表格記錄)
- 地質(zhì)災(zāi)害群測群防講義
- 高頻變壓器標(biāo)準(zhǔn)工時對照表
評論
0/150
提交評論