光電檢測(cè)技術(shù)英文_第1頁(yè)
光電檢測(cè)技術(shù)英文_第2頁(yè)
光電檢測(cè)技術(shù)英文_第3頁(yè)
光電檢測(cè)技術(shù)英文_第4頁(yè)
光電檢測(cè)技術(shù)英文_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PAGE

PAGE

1

英文原文

1.5ExperimentalSetup

Duetothemanyconceptsandvariationsinvolvedinperformingtheexperimentsinthisprojectandalsobecauseoftheirintroductorynature,Project1willverylikelybethemosttimeconsumingprojectinthiskit.Thisprojectmayrequireasmuchas9hourstocomplete.Werecommendthatyouperformtheexperimentsintwoormorelaboratorysessions.Forexample,powerandastigmaticdistancecharacteristicsmaybeexaminedinthefirstsessionandthelasttwoexperiments(frequencyandamplitudecharacteristics)maybeperformedinthesecondsession.

ANoteofCaution

Alloftheabovecommentsrefertosingle-modeoperationofthelaserwhichisaveryfragiledevicewithrespecttoreflectionsandoperatingpoint.Onemustensurethatbeforeperformingmeasurementsthelaserisindeedoperatingsingle-mode.Thiscanberealizedifasingle,broadfringepatternisobtainedorequivalentlyagoodsinusoidaloutputisobtainedfromtheMichelsoninterferometerasthepathimbalanceisscanned.Ifthisisnotthecase,thelaserisprobablyoperatingmultimodeanditscurrentshouldbeadjusted.Ifsingle-modeoperationcannotbeachievedbyadjustingthecurrent,thenreflectionsmaybedrivingthelasermultimode,inwhichcasethesetupshouldbeadjustedtominimizereflections.Ifstillnotoperatingsingle-mode,thelaserdiodemayhavebeendamagedandmayneedtobereplaced.

Warning

Thelasersprovidedinthisprojectkitemitinvisibleradiationthatcandamagethehumaneye.Itisessentialthatyouavoiddirecteyeexposuretothelaserbeam.Werecommendtheuseofprotectiveeyeweardesignedforuseatthelaserwavelengthof780nm.

ReadtheSafetysectionsintheLaserDiodeDriverOperatingManualandinthelaserdiodesectionofComponentHandlingandAssembly(AppendixA)beforeproceeding.

1.5.1SemiconductorDiodeLaserPowerCharacteristics

1.Assemblethelasermountassembly(LMA-I)andconnectthelasertoitspowersupply.Wewillfirstcollimatethelightbeam.Connectthelaserbeamtoavideomonitorandimagethelaserbeamonawhitesheetofpaperheldabouttwototen

(xzplaneinFigure1.1)isparallelwiththetablesurface.

2.Duetotheasymmetricdivergenceofthelight,thecross-sectionofthebeamleavingthelaserand,further,pastthesphericallensiselliptical.Thebeam,thus,hastwodistinctfocalpoints,oneintheplaneparallelandtheotherintheplaneperpendiculartothelaserdiodejunction.Thereisapointbetweenthetwofocalpointswherethebeamcross-sectioniscircular.Withtheinfraredimagerandawhitecard,roughlydeterminethepositionwherethebeamcross-sectioniscircular.

Figure1.9–Procedureforfindingastigmaticdistance.

3.Adjustthelaserdiodetolensdistancesuchthattherazorbladesarelocatedinthexyplanewherethebeamcross-sectioniscircular.

4.Movethelaserdiodeawayfromthelensuntilminimumbeamwaistisreachedattheplaneofrazorblades.Now,movethelaserdiodeabout200μmfurtherawayfromthelens.

5.Moverazorblade1inthexdirectionacrossthebeamthroughthebeamspreadθxandrecordthexpositionanddetectedintensityateachincrement(≤100μmincrements).TheexpectedoutputisshowninFigure1.9.Thederivativeofthiscurveyieldstheintensityprofileofthebeaminthexdirectionfromwhichthebeamdiameterisdetermined.

6.Repeatwithrazorblade2forθyintheydirection.

7.Movethelaserclosertothelensinincrements(≤50μm)throughatotalofatleastthan500μm.RepeatSteps5and6ateachzincrement,recordingthezposition.

8.Usingthecollecteddata,determinethebeamintensityprofilesinthexandydirectionsasafunctionofthelenspositionz.Thisisdonebydifferentiatingeachdatasetwithrespecttoposition.Then,calculatethebeamdiameterandplotasafunctionofz.Thedifferenceinzfortheminimuminθxandθyistheastigmaticdistanceofthelaserdiode.Useofcomputersoftware,especiallyindifferentiatingthedata,ishighlyrecommended.

Ifthelaserjunctionisnotparalleltothetablesurface,thenforeachmeasurementabove,youwillobtainanadmixtureofthetwobeamdivergencesandthemeasurementwillbecomeimprecise.Ifthelaserisorientedat45°tothesurfaceofthetable,theastigmaticdistancewillbezero.

Differentlaserstructureswillhavedifferentangularbeamdivergencesand,thus,differentastigmaticdistances.Ifyouhaveaccesstoseveraldifferentlasertypes(gainguided,indexguided),itmaybeinstructivetocharacterizetheirastigmaticdistances.

1.5.3FrequencyCharacteristicsofDiodeLasers

Inordertostudyfrequencycharacteristicsofadiodelaser,wewillemployaMichelsoninterferometertoconvertfrequencyvariationsintointensityvariations.Anexperimentalsetupforexaminingfrequencyand,also,amplitudecharacteristicsofalasersourceisillustratedinFigure1.10.

1.Inthisexperiment,itisverypossiblethatlightmaybecoupledbackintothelaser,thereby,destabilizingit.Anopticalisolator,therefore,willberequiredtominimizefeedbackintothelaser.Asimpleisolatorwillbeconstructedusingapolarizingbeamsplittercubeandaquarterwaveplate.Weorientthequarterwaveplatesuchthatthelinearlypolarizedlightfromthepolarizerisincidentat45°totheprincipalaxesofthequarterwaveplatesothatlightemergingfromthequarterwaveplateiscircularlypolarized.Reflectionschangeleft-circularpolarizedlightintoright-circularorviceversasothatreflectedlightreturningthroughthequarterwaveplatewillbelinearlypolarizedand90°rotatedwithrespecttothepolarizertransmissionaxis.Thepolarizer,then,greatlyattenuatesthereturnbeam.

Inassemblingtheisolator,makesurethatthelaserjunction(xzplaneinFigure1.1)isparalleltothesurfaceofthetable(thenotchonthelaserdiodecasepointsupward)andthebeamiscollimatedbythelens.Thelaserbeamshouldbeparalleltothesurfaceoftheopticaltable.Setthepolarizerandquarterwave(λ/4)plateinplace.Placeamirroraftertheλ/4plateandrotatetheλ/4platesothatmaximumrejectedsignalisobtainedfromtherejectionportofthepolarizingbeamsplittercubeasshowninFigure1.11.Whenthissignalismaximized,thefeedbacktothelasershouldbeataminimum.

2.ConstructtheMichelsoninterferometerasshowninFigure1.12.Placethebeamsteeringassembly(BSA-II)ontheopticaltableandusethereflectedbeamfromthemirrortoadjustthequarterwaveplateorientation.Setthecubemount(CM)ontheopticalbreadboard,placeadoublesidedpieceofadhesivetapeonthemount,andputthenonpolarizingbeamsplittercube(05BC16NP.6)ontheadhesivetape.Next,placetheotherbeamsteeringassembly(BSA-I)andthedetectormount(M818BB)inlocationandadjustthemirrorssothatthebeamsreflectedfromthetwomirrorsoverlapatthedetector.

Whenlongpathlengthmeasurementsaremade,theinterferometersignalwilldecreaseordisappearifthelasercoherencelengthislessthanthetwowayinterferometerpathimbalance.Ifthisisthecase,shortentheinterferometeruntilthesignalreappears.Ifthisdoesnotwork,thencheckthelaserforsingle-modeoperationbylookingforthefringepatternonacardorbyscanningthepiezoelectrictransducerblock(PZB)inBSA-IIandmonitoringthedetectoroutputwhichshouldbesinusoidalwithPZBscandistance.Ifthelaserdoesnotappeartobeoperatingsingle-mode,realigntheisolatorand/orchangethelaseroperatingpointbyvaryingthebiascurrent.Additionally,toensuresingle-modeoperation,thelasershouldbeDCbiasedabovethresholdbeforeapplyingACmodulation.Overdrivingthelasercanalsoforceitintomultimodeoperation.

3.TheMichelsoninterferometerhasthepropertythatdependingonthepositionofthemirrors,lightmaystronglycouplebacktowardthelaserinputport.Inordertofurtherreducethefeed-back,slightlytiltthemirrorsasillustratedinFigure1.13.Ifstillunabletoobtainsingle-modeoperation,replacethelaserdiode.

4.Placeawhitecardinfrontofthedetectorandobservethefringepatternwiththeinfraredimager.Slightlyadjustthemirrorstoobtainthebestfringepattern.Trytoobtainonebroadfringe.

5.Positionthedetectoratthecenterofthefringepatternsothatitinterceptsnomorethanaportionofthecenteredpeak.

6.Byapplyingavoltagetothepiezoelectrictransducerblockattachedtothemirror(partPZB)inonearmoftheinterferometer(i.e.BSA-II),maximizetheoutputintensity.Theoutputshouldbestableoveratimeperiodofaminuteorso.Ifitisnot,verifythatallcomponentsarerigidlymounted.Iftheyare,thenroomaircurrentsmaybedestabilizingthesetup.Inthiscase,placeabox(cardboardwilldo)overthesetuptopreventaircurrentsfromdisturbingtheinterferometersetup.

7.Placetheinterferometerinquadrature(pointofmaximumsensitivitybetweenmaximumandminimumoutputsoftheinterferometer)byvaryingthevoltageonthePZB.

8.Theoutputsignaloftheinterferometerduetofrequencyshiftingofthelaserisgivenby?I∝?φ=2π/c?L?νwhere?Listhedifferenceinpathlengthbetweenthetwoarmsoftheinterferometerand?νisthefrequencysweepofthelaserthatisinducedbyapplyingacurrentmodulation.RememberthatinaMichelsoninterferometer?Listwicethephysicaldifferenceinlengthbetweenthearmssincelighttraversesthislengthdifferenceinbothdirections.?Lvaluesof3-20cmrepresentconvenientlengthdifferenceswiththelarger?Lyieldinghigheroutputsignals.

Beforeweapplyacurrentmodulationtothelaser,notethattheinterferometeroutputsignal,?I,shouldbemadelargerthanthedetectororlasernoiselevelsbyproperchoiceof?Landcurrentmodulationamplitudedi.AlsorecallfromSection1.3thatwhenthediodecurrentismodulatedsoisthelaserintensityaswellasitsfrequency.Wecanmeasurethelaserintensitymodulationbyblockingonearmoftheinterferometer.Thiseliminatesinterferenceandenablesmeasurementoftheintensitymodulationdepth.We,then,subtractthisvaluefromthetotalinterferometeroutputtodeterminethetruedI/diduetofrequencymodulation.Applyalowfrequency,smallcurrentmodulationtothelaserdiode.Notethatwhentheproperrangeisbeingobserved

and

fortheamplitudechangeonly.Recalling

,,

or

whereKisadetectorresponseconstantdeterminedbyvarying?L.

9.Withtheinterferometeranddetectionsystemproperlyadjusted,varythedrivefrequencyofthelaserandobtainthefrequencyresponseofthelaser(Figure1.4or1.10a).Youwillneedtorecordtwosetsofdata:(i)themodulationdepthoftheinterferometeroutputasafunctionoffrequency,and(ii)thelaserintensitymodulationdepth.ThedifferenceofthetwosetsofcollecteddatawillprovideanestimateoftheactualdI/diduetofrequencymodulation.Alsonotethatifthecurrentmodulationissufficientlysmallandthepathmismatchsufficientlylarge,thelaserintensitymodulationmaybenegligible.YoumayneedtoactivelykeeptheinterferometerinquadraturebyadjustingthePZBvoltage.

Makeanynecessaryfunctiongeneratoramplitudeadjustmentstokeepthecurrentmodulationdepthofthelaserconstantasyouvarythefrequency.Thisisbecausethefunctiongenerator/drivercombinationmaynothaveaflatfrequencyresponse.Theeffectofthisisthatthecurrentmodulationdepthdiisnotconstantandvarieswithfrequency.Sotoavoidunnecessarycalculations,monitorthecurrentmodulationdepthbyconnectingtheLASERMONITORconnectoronthelaserdiodedriversystemtoanoscilloscopeandkeepthemodulationdepthconstantbyadjustingtheamplitudeoftheappliedsinusoidalwaveasafunctionoffrequency.Recordthefrequencyforyourlaseratwhichthethermalcontributiontodν/dibeginstobecomenegligibleanddν/didropsoff(seeSection1.3).

10.Keepingtheaboveequationsinmind,wewill,now,measuretheFMchirpcharacteristicsofthelaser.Ataconstantcurrentmodulationfrequency(chooseamodulationfrequencywheredν/divariesrapidly,i.e.wheretheslopeofyourgraphfromStep9,whichshouldbesimilartoFigure1.10a,ismaximum),varythecurrentmodulationdepthdifordifferentlaserbiaslevelsandderiveacurvesuchastheoneinFigure1.10b.Theoutputdνshouldnotvarysignificantlyexceptaroundthresholdandathighcurrents.

Caution

Donotexceedthespecifieddrivecurrents/outputpowerratingsofthediodeoritmaybedamaged.

11.Thephasenoisecharacteristicbehavior(Section1.4)asafunctionofinterferometerpathlengthimbalance?Lmaybedeterminedbyinducingphasenoisethroughapplicationoflasercurrentmodulation.Makesurethattheinterferometerisinquadrature.

Setthelaserdiodecurrentabovethreshold,applyasmallcurrentmodulation,andfixthemodulationfrequencyatadesiredvalue.Convenientfrequenciesmayinclude50Hz,2kHz,and50kHz(seeReference1.5).Monitorthedetectoroutputwithaspectrumanalyzeroranoscilloscopeandrecordthepeak-to-peakoutputintensityatinterferometerquadrature.YoumayaccomplishthisbymanuallysweepingthePZBvoltagetocauseaminimumofπ/2phaseshift,recordingthemaximumpeak-to-peakintensityasafunctionofpathlengthimbalance.Itisimportanttoensurethatinstrumentnoiseisbelowthesignallevelsexpectedanditisassumedthatsingle-modeoperationofthelaserismaintained.CurvessimilartoFigure1.10cshouldbeobtained.

1.5.4AmplitudeCharacteristicsofDiodeLasers

ThemeasurementsoftheintensitycharacteristicsaretakenbyplacingthedetectorbeforetheinterferometerasinFigure1.10orbyblockingonemirrorintheinterferometer.Again,thelasermustbeoperatedsingle-modedwithminimumfeedbackorthenoiselevelandfunctionalitywilldrasticallychange.Therelativeintensitynoise(RIN)isdefinedas20log(dI/I)wheredIistheRMSintensityfluctuationssothatfordI~10-4,theRINis-80dB.Normally,thesemeasurementsaremadewithaspectrumanalyzeranda1Hzbandwidth.

WhenmakingRINmeasurements,electronicandphotodetectorshotnoisemustbebelowtheRINlevels.(OPTIONAL)Youmaydeterminetheshotnoiseusinganincoherentsource(e.g.lamp)withanintensitylevelsimilartothatofthelaser.Theresultantfrequencyspectrumofnoisewiththelightsourceexcitedgivesameasureoftheshotnoiselevelwhichshouldbeadjustedtobeatleast10dBgreaterthanelectronicnoiselevels.ThemeasuredshotnoiseshouldbecheckedwithEquation0.47.

1.Varythelaserdrivecurrentfrombelowthresholdt

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論