版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
/journal/designs
Designs2023,7,100.
/10.3390/designs7040100
[eess.SY]11Aug2023
Review
SafetyinTrafficManagementSystems:AComprehensiveSurveyWenluDu,AnkanDash,JingLi,HuaWeiandGuilingWang*
Citation:Du,W.;Dash,A.;Li,J.;Wei,H.;Wang,G.SafetyinTraffic
ManagementSystems:AComprehensiveSurvey.Designs2023,7,100.
/10.3390/
designs7040100
arXiv:2308.06204v1
AcademicEditor:RobertoGabbrielli
Received:4June2023
Revised:1July2023
Accepted:13July2023
Published:10August2023
Copyright:?2023bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccessarticledistributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license
(https://
/licenses/by/
4.0/).
YingWuCollegeofComputing,NewJerseyInstituteofTechnology,Newark,NJ07102,USA;wd48@(W.D.);ad892@(A.D.);jingli@(J.L.);hua.wei@(H.W.)
*Correspondence:gwang@
Abstract:Trafficmanagementsystemsplayavitalroleinensuringsafeandefficienttransportationonroads.However,theuseofadvancedtechnologiesintrafficmanagementsystemshasintroducednewsafetychallenges.Therefore,itisimportanttoensurethesafetyofthesesystemstopreventaccidentsandminimizetheirimpactonroadusers.Inthissurvey,weprovideacomprehensivereviewoftheliteratureonsafetyintrafficmanagementsystems.Specifically,wediscussthedifferentsafetyissuesthatariseintrafficmanagementsystems,thecurrentstateofresearchonsafetyinthesesystems,andthetechniquesandmethodsproposedtoensurethesafetyofthesesystems.Wealsoidentifythelimitationsoftheexistingresearchandsuggestfutureresearchdirections.
Keywords:survey;trafficsafety;proactivesafetymethods;safetyanalysis;crashprediction;crashriskassessment;deeplearning;machinelearning;statisticalanalysismethods
1.Introduction
AsaddressedbytheU.S.DepartmentofTransportationStrategicPlanFY2022–2026(
/dot-strategic-plan
)(accessedon14March2023),makingthetransportationsystemsaferforallpeopleisstillatopstrategicgoal.About95%oftransportationfatalitiesintheUSAoccuronthecountry’sstreets,roads,andhighways,andthenumberofdeathsisincreasing.Trafficsafetyisofparamountimportance,particularlyintheeraofemergingtechnologieslikeautomatedvehiclesandconnectedvehicles[
1
].Asthesetechnologiescontinuetoevolveandbecomemoreprevalentontheroads,thepotentialforsafertransportationincreasessignificantly.Automatedvehicleshavethepotentialtominimizehumanerror,whichisresponsibleforthemajorityoftrafficaccidents.Withtheiradvancedsensorsandalgorithms,theycandetectandrespondtopotentialhazardsmoreswiftlyandeffectivelythanhumandrivers.Similarly,connectedvehiclesenablereal-timecommunicationbetweenvehiclesandinfrastructure,allowingforenhancedawarenessandcoordinationontheroad.Thisconnectivityfacilitatestheexchangeofcriticalinformation,suchastrafficconditions,weatherupdates,androadhazards,therebyenablingdriverstomakeinformeddecisionsandavoidpotentialdangers.Byembracingandprioritizingtrafficsafetyinconjunctionwiththeseadvancedtechnologies,wecanstrivetowardsafuturewithreducedaccidents,injuries,andfatalitiesontheroadways,ultimatelycreatingasaferandmoreefficienttransportationsystemforall.
Inthepastfiveyears,researchershavemadesignificanteffortsinthefieldoftrafficsafety[
2
–
4
].Someresearchers,particularlythoseincivilengineering,havefocusedonstatisticalanalysistoidentifyandprioritizecountermeasures.Byanalyzinghistoricaldatasetsandrecords,theyaimtounderstandthecause-and-effectrelationshipsanddevelopeffectivestrategies.Forinstance,theyexaminecontributoryfactorssuchasadverseweatherconditionsthatincreasetheriskofaccidents[
5
–
7
].Thisanalysishelpsindevisingcontrolplans,includingdriverwarnings,toreducecrashratesduringextremeweatherevents.Ontheotherhand,interdisciplinaryresearchersaimtoprovideaccurateriskinformationbyutilizingmachinelearninganddeeplearningmodels[
4
].Theyworktowardsdevelopingreal-timecrashriskpredictionsystems.However,whenitcomestooperationalaspects,
2of30
Designs2023,7,100
lessattentionhasbeengiventoexplainingtheimpactofvariablesandmoreemphasishasbeenplacedonimprovingpredictionaccuracy.Techniqueslikedeepneuralnetworks,generativemodels,reinforcementlearning,ensemblemethodslikeXGBoost,andcomputervision-basedalgorithmshavegainedpopularityinthisregard.Thissurveyprovidesanoverviewoftheadvancementsinthesetwodirections,summarizingthestate-of-the-artresearchinthefield.
Furthermore,wehavecategorizedtherecentliteraturebasedonthespecificareasofanalysisorcontrol.Putsimply,someresearchersconcentrateonenhancingtheoverallsafetyofanentiretrafficnetworkoraspecificregion[
8
,
9
],suchasdowntownNewYorkCity.Othersaddresscrash-relatedissuesoccurringonhighwaysegments[
10
],onramp/offrampsections[
11
],weavingareas[
12
],andcurvedsegments[
13
].Additionally,effortshavebeenmadetoimprovesafetyatintersections[
14
].Asautomatedvehicles,connectedvehicles,andconnectedandautonomousvehicle(CAV)technologycontinuetoemerge,alongwithadvancedfeatureslikeautomaticemergencybraking(AEB)withpedestriandetection,adaptivecruisecontrol(ACC)systems,andadvanceddriverassistancesystems(ADAS),studieshavefocusedonthevehiclesideaswell[
3
].Forinstance,researchersevaluatethereal-timeriskofcollisionsinscenariosinvolvingcarfollowing[
15
]orplatooning[
16
].Inthissurvey,wealsoprovideanoverviewofexistingresearchintheseaspects.
Finally,weconcludebyaddressingthepresentchallengesandlimitations,aimingtoprovideaclearunderstandingofareasthatcanbeimprovedinthefuture.Throughourcomprehensiveliteraturereview,weobservedthatcertainlimitationsareprevalentandremainunresolvedtothisday.Onesuchchallengeistheimbalanceddataproblem[
17
],whichsignificantlycomplicatespredictivetasksduetothelimitedrepresentationofcrashdatawithinthedataset.Manyresearchershighlightthedifficultyincollectinglabeledacci-dentdatainreal-worldscenarios[
10
].Anothercommonissueisthelackofgeneralizabilitytoreal-worldconditions[
18
],assomeproposedmodelsdemonstratesatisfactoryperfor-manceonlyinsimulatedenvironments,withlimitedevidenceofsuccessfuldeploymentinreal-worldsettings.Itisessentialtorecognizeandaddressthesechallengesinordertoadvancethefieldoftrafficsafetyandimprovetheapplicabilityoftheresearchfindingsinpracticalcontexts.
Itisimportanttonotethedivergencebetweentheresearchconductedinthefieldofcivilengineeringandinterdisciplinaryresearch,particularlyincomputerscience.Civilen-gineeringresearchersoftenemploystatisticalanalysisandsensitivityanalysistoexplorethecorrelationbetweenvariablesandtheirimpactonsafety.Theyfrequentlyutilizereal-worlddatasetsandconductfieldteststoobtainempiricalevidence.Conversely,interdisciplinaryresearcherstendtoprioritizethedesignofmodelsusingsimulatedenvironments,whichmayormaynottranslateeffectivelyintopracticalapplications.However,thereisagrowingtrendtowardsintegratingdomain-specificruleswithpopularneuralnetworkmodelstoleveragethestrengthsofbothapproaches[
19
].Thiscollaborativeapproachaimstobridgethegapandcapitalizeonthebenefitsofferedbycombiningdomainknowledgewiththecapabilitiesofneuralnetworks.
Thesurveypapermakesthefollowingcontributions:
?Athoroughexaminationoftheliteraturepublishedwithinthelastfiveyearsiscon-ducted,allowingforanaccuratedepictionoftheprevailingresearchtrendsduringthisperiod.
?Theliteraturecollectionexclusivelyfocusesontop-tiervenues,ensuringthattheselectedworksarehighlyrepresentativeofboththedomainfieldandcomputersciencefield.Thisprovidesvaluableinsightsforresearchersinterestedintrafficsafetyapplications.
?Wecategorizetheworksintotwodistinctcategoriesofanalysisandcontrolandprovidecorrespondingsummariesthatoutlinetheresearchobjectivesandlimitations.Thiscategorizationoffersinspirationandguidanceforfutureresearchersinthefield.
3of30
Designs2023,7,100
2.ReviewMethod
Inthissection,weoutlinetheprocessofcollectingourreviewpapers.Weprovidedetailsregardingthenumberofpapersreviewed,theirrespectivesources,andtherelevantstatistics.Forinstance,wehighlightthedistributionofpapersbetweenthecomputerscienceandtransportationfields,sheddinglightontherepresentationfromeachdiscipline. Toinitiateourpapercollection,weconductedkeywordsearchesfortermssuchasroadsafety,accidentprevention,accidentavoidance,crashrisk,andtrafficaccidentacrosstop-tiervenuesinboththetraditionaltransportationfieldandcomputerscienceandrelateddisciplines.Thesurveycoversaspanoffiveyears,specificallyfrom1January2019to
1June2023.Figure
1
presentsagraphicalrepresentationofthepublicationdistributionduringthisfive-yearperiod,distinguishingbetweenpublicationsinthetransportationfieldandthoseinthecomputersciencefield.Whilecomputerscienceencompassesdiversere-searchareas,wediscoveredseveralrenownedvenueswherecomputerscientistscontributetheirwork,applyingproposedmodelstothetransportationdomainanddemonstratingtheirpracticality.Althoughthenumberofpublicationsincomputerscienceisrelativelysmallcomparedtothatinthetransportationfield,thereisanevidentupwardtrendinpublicationsovertheyears,indicatingthepressingneedtoenhancesafetymeasures.Thisupwardtrajectorysuggeststhattheriseinpublicationswilllikelycontinueinthefuture.
Figure1.Collectedpaperpublicationsindifferentfieldswithinthepastfiveyears.
Figure
2
displaysacomprehensivelistofthetop-tiervenuesutilizedinthissurvey,alongwiththecorrespondingpublicationcountsforeachvenue.Inthetransportationfield,weobservedthatIEEETransactionsonIntelligentTransportationSystemsaccumulatedthehighestnumberofpublications,suggestingitsprominenceamongresearchersfordisseminatingtheirwork.Additionally,conferencesinroboticengineeringalsocontributedseveralpublications,withaprimaryfocusonautonomousdrivingandrelatedtechniques.
Figure2.Collectedpaperpublicationsbypublicationvenueswithinthepastfiveyears.
4of30
Designs2023,7,100
3.SurveyingtheLiterature:AnIn-DepthExploration
Basedontheanalysisofthesurveyedpapers,wecategorizedthemintofourdistinctsectionsasshowninTables
1
and
2
.Firstly,wehighlighttherecurringproblemsortopicsthatfrequentlyappearedinthepublications.Secondly,weprovideasummaryoftheareaswheresafetyimprovementsareemphasized,suchasintersectionsorfreeways.Thirdly,weexaminethespecifictargetsthatresearchersfocusedonintheireffortstoenhancesafety,suchasconnectedvehicles,andwecompileacomprehensivelistofthetrendingtechniques
discussedinthesurveyedpapers.
Table1.Keywordsummary.
Topics
?
?
?
?
?
?
?
?
IdentificationofDangerousVehiclesAccidentForecasting
IdentificationofCrashRisk
CrashRiskAssessment
Real-timeProactiveRoadSafety
ForwardCollisionAvoidance
Rear-endCollisionAvoidanceSecondaryCrashLikelihoodPrediction
?
?
?
?
?
?
?
?
CyclistCrashRatesAssessment
RareEventModeling
Inter-vehicleCrashRiskAnalysisIdentificationofHigh-riskLocationsTrajectoryPredictions
TrajectoryCollisionAvoidancePredictivePlatoonControlPedestrianOccupancyForecasting
?
Spatial–temporalCorrelations
?
Signal-vehicleCoupledControl
?
Minute-Level
?
CarFollowing
?
DriverBrakingBehavior
?
Take-overPerformance
?
Driver’sEvasiveBehavior
?
Left-turnatSignalizedIntersections
?
Heavy-truckRisk
?
Safety-awareAdaptiveCruiseControl
?
MovingVehicleGroups
?
AdaptiveMergingControl
?
School-agedChildren
?
LaneKeepingSystem
?
Evacuation
?
In-vehicleWarning
?
OldDrivers
?
Context-aware
?
SocialVulnerability
?
Multitask
?
DrivingImpairmentsandDistractions
?
HumanDriverImitation
?
PedestrianCrashRiskAnalysis
?
DashcamVideos
?
AutomaticEmergencyBrakingSystems
?
DriverDrowsinessMonitoring
?
Precipitation
?
HazyWeatherConditions
?
SurrogateSafetyMetrics
?
On-rampMergingControl
?
AdaptiveTrafficSignalControl
?
PreferencesofAggressiveness
Uponcarefulobservation,weidentifiedcrashriskpredictionasthemostextensivelyaddressedtopicamongthesurveyedpapers.Itoccupiedasignificantportionofthelitera-turereviewed.Furthermore,wenoticedagrowingtrendoffocusingonspecificconditionsorscenarios,suchasheavy-truckrisk,school-agedchildren,evacuation,extremeweather,andmore.Thesepapersaimedtoaddresssafetyissueswithinthesespecificsituationsandproposemeasuresforimprovement.Withtheadventofadvancedtechnologies,safetyconcernsrequirereassessmentandreevaluation.Someworksdelvedintothesafetyimpli-cationsofemergingtechnologies,suchasanalyzingtake-overperformanceorexaminingtheimpactofautomaticemergencybrakingsystemsonoverallsafety.Additionally,cer-tainhigh-riskareasthatfrequentlyexperienceaccidentshavegarneredattentionfromresearchers,leadingtofocusedinvestigationsontopicslikeon-rampmergingcontrol.Moreover,newsurrogatesafetymetricshaveemergedashighly-discussedsubjectswithintheliterature,furtherreflectingtheshiftinglandscapeoftrafficsafetyresearch.
Itisimportanttoacknowledgethedisparitybetweentheresearchconductedinthetransportationdomainandtheresearchpursuedbycomputerscientists.Thetraditionaldomainapproachesprimarilyfocusedonanalyzingthecontributoryfactorsleadingtocrashes,whereascomputerscienceresearcherswereinclinedtowardsdesigningmoreeffectivemodelsforriskpredictionandsafetyplanning.Inthesubsequentsections,we
5of30
Designs2023,7,100
adheretothislogicaldistinctionbyfirstdelvingintotheanalysisofthecontributoryfactorsandsubsequentlyintroducingvariouscontrolmethods.
Table2.Keywordsummarybydifferentperspectives.
InvestigatedLocations
?FreewaySegments
?HorizontalCurvature
?Expressways
?Intersection
?RoadwaySegments
?UrbanArterials
?TypeAWeavingSegments
?RingRoads
ConsideredEntities
?ConnectedVehicles
?AutonomousVehicles
?Cycling
?Motorists
?Pedestrians
Techniques
?BayesianNetwork
?DeepReinforcementLearning
?ReinforcementLearningTree
?InverseReinforcementLearning
?ComputerVision
?MatchedCaseControl
?PropensityScore
?SHapleyAdditiveExPlanation
?GradientBoosting
?LSTM-CNN
?TransferLearning
?AttentionNetwork
?SupportVectorMachines
?StackedAutoencoder
?GatedRecurrentUnit
?MonteCarloTreeSearch
?ImitationLearning
Data
?
?
?
NaturalisticDrivingData
SimulatedData
DrivingSimulatorPlatform
??
SHRP2NDSData
Event-basedData
3.1.OngoingFundedResearchProjects
Inadditiontothemajorscientificconferencesandjounals,wealsoinvestigateactivefundedresearchprojectsonsafetyincludingNCHRP,FHWA,andNHTSA,aimingtosummarizethelatesttrendinpractice.
NCHRPRsearchProjects.AU.S.researchprogramaddressingtransportationchal-lenges,administeredbyTRBundertheNationalAcademies,NCHRPfundsprojectsonvarioustopics,includinghighwaysafety,involvingexpertsfromacademia,industry,andgovernmenttoenhancetransportationsafety.NCHRPprojectsaimtoenhancetrafficsafetyanddevelopstrategiesforpedestrians,bicyclists,androadinfrastructure.Theycoverareassuchastrafficsafetyculture,pedestriansafety,highway–railgradecrossings,ruralhighways,alternativeintersections,motoristbehavior,andleveragingAIandbigdata.Theresearchfocusesonimprovingsafety,reducingcrashes,andprovidingdecision-makingtoolsfortransportationdepartments.Specifically,NCHRP17-96aimstodevelopapriori-tizedresearchroadmapforTrafficSafetyCulture(TSC)toimprovetrafficsafetybychangingvaluesandattitudesandstrategicallyapplyingTSCstrategiesincollaborationwiththe4Es.NCHRP17-97investigatesthecausesofnighttimepedestriancrashes,evaluatestheexistingandemergingstrategiesforimprovingpedestriannighttimesafety,proposeseffec-tivemitigationstrategies,anddevelopsguidancefortheirimplementation.NCHRP17-99developsaframeworkandtoolsforassessingthesafetyeffectivenessoftreatmentsandtechnologiesathighway–railgradecrossings,aidingdecisionmakingtoreduceincidentsandimprovesafety.NCHRP17-92developsapredictivemethodologyforestimatingthecrashfrequencyandseverityonruraltwo-lanetwo-wayhighways,incorporatingspeedmeasures.NCHRP17-109developsCrashModificationFactors(CMFs)forAutomatedTrafficSignalPerformanceMeasures(ATSPM)signaltiming,quantifyingsafetybenefitsandcrashreductionsforallmodesandconflicttypes.NCHRP17-108developsquantitativecrashpredictionmethodologies,includingSafetyPerformanceFunctions(SPFs)andCrash
6of30
Designs2023,7,100
ModificationFactors(CMFs),foralternativeintersectiondesigns(DLT,MUT,andRCUT)toquantifytheirsafetybenefits.NCHRP17-106quantifiestheeffectsofcenterlineandshoulderrumblestripsonbicyclists’safetyandworkstounderstandmotorists’behavior,informingdesignpoliciesanddevelopingaguideforrumblestripapplications.NCHRP17-100leveragesAI,machinelearning,andbigdatatoprovidedata-drivenanalysistoolsandprioritizeinvestmentsforsaferroads,focusingonpedestrians,cyclists,andnew-mobilityusers.
FHWAResearchProjects.TheFHWAisaU.S.governmentagencythatmanagesandimprovesthecountry’shighwaystomakesuretheyaresafe,efficient,andaccessible.Theyworkonprojectsrelatedtoroadinfrastructure,trafficmanagement,andtransporta-tionplanning,playingacrucialroleinmaintainingandenhancingthetransportationnetworkforpeopleandgoods.FHWA-PROJ-19-0014aimstodevelopanArtificialRealisticData(ARD)generatorforevaluatingsafetyanalysismethods.FHWA-PROJ-20-0030linksdatabasestodevelopspeed-relatedCrashModificationFactors(CMFs)forsafetyanalysis.FHWA-PROJ-21-0069usesAImodelstopredicttrafficconditionsandmanagehighwaysproactively.FHWA-PROJ-20-0054createsasafetyassessmenttoolforinterchangedesigns.FHWA-PROJ-19-0089focusesonhumanfactorsinautomatedvehicles.FHWA-PROJ-19-0085evaluatesintersectiondesignsforpedestrianandbicyclistsafety.FHWA-PROJ-19-0026collectsdataandevaluatessafetyimprovementsformini-roundabouts,wrong-waydriving,andbicycleintersections.FHWA-PROJ-20-0002studiesthesafetyofpedestriancrossingsignswithLEDs.
NHTSAResearchProjects.TheNHTSA,aU.S.federalagencyundertheDepartmentofTransportation,activelypromoteshighwaysafety,setsvehiclestandards,andreducestrafficinjuries.ItfacilitatestheESVconference,aplatformforsharingresearchandinitiativesonvehiclesafety,withpaperspublishedintheTrafficInjuryPreventionJournal.Afterreviewingtherecentpublications,wesummarizedthefollowingstudies:
Astudy[
20
]investigatedtheimpactofsexonfatalityratesincarcrashes,findingthatnewervehiclesandadvancedsafetyfeatureshavereducedfatalityrisksforfemaleoccupantscomparedtomales.Anotherstudy[
21
]evaluatedoccupantmodelswithactivemusclesandshowedtheirabilitytoaccuratelypredictoccupantresponsesincrashsimu-lations.Aninvestigation[
22
]focusedonelderlyindividualsinnear-sideimpactcrashesrevealedtheneedforfurtheranalysisinestablishinginjurythresholds.Astudy[
23
]ondrowsy-drivingdetectionmodelsincorporatedmultipledatasourcesandachievedgoodaccuracyinpredictingdrowsiness.Astudy[
24
]evaluatedthecrashreductionsachievedincarsequippedwithautomaticemergencybraking(AEB)systemswithpedestrianandbicyclistdetection.Theanalysisshowedanoverallreductioninthecrashrisk,withAEBsystemsreducingthepedestriancrashriskby18%andthebicyclistcrashriskby23%duringdaylightandtwilightconditions.However,nosignificantreductionswereobservedindarkness.Anothermethod[
25
]wasdevelopedtoaccuratelyandefficientlysimulatevehiclecollisions,providingcollisionseverityparametersforinjurymitigationassessment.Regulationsarebeingdevelopedforthesafeintroductionofautomateddrivingsystems,andadata-drivenscenario-basedassessmentmethodwasproposed[
26
]toestimatetheirsafetyrisk.
Throughourinvestigation,weobservedatrendtowardsutilizingadvancedtechnolo-gies,suchasactivemuscles,AEBsystems,anddata-drivenmodels,toenhancesafetyinvariousaspectsofcarcrashes.Sex-specificanalysisandunderstandingtheimpactofsexonfatalityrateshavegainedattention.Accurateprediction,detection,andassessmentofrisksarecrucialforenhancingsafetymeasures.Ongoingeffortsfocusondevelopingtechnologiesandmethodsforsimulatingandassessingcollisionseverity,aimingtoenhanceinjurymitigationcapabilities.
7of30
Designs2023,7,100
3.2.GeographicalDistributionoftheStudyArea
Weexaminedtheresearchlocationshighlightedintherecentliterature,specificallythesiteswheretheirexperimentswereconducted,asdepictedinFigure
3
.Ouranalysisre-vealedthatFlorida,USA,andShanghai,China,emergedastwocommonlychosenlocations.
US
China
Canada
Korea Japan Indian Europe Netherland Brazil
Figure3.Spatialdistributionofstudyregion:Variedcolorsdepictdiversecountries,andgreatercirclesizesignifiesmoreextensiveresearchinthatlocation.
4.Analysis
Theanalysisofsafetyintrafficmanagementsystemsinvolvesevaluatingandassessingthesafetyaspectsofvariouscomponentsandprocesseswithinatransportationsystem.Itaimstoidentifythepotentialhazards,assesstherisks,andimplementmeasurestomitigatethoserisks,ultimatelyensuringthesafetyofroadusersandminimizingtheoccurrenceofaccidents.Inadditiontoriskanalysis,researchersalsostrivetoanalyzeinjurieswiththegoalofminimizingtheiroccurrenceandseveritytothelowestpossiblelevel.Theanalysisofsafetyintrafficmanagementsystemsisamultidisciplinaryfieldthatcombinesexpertisefromtransportationengineering,dataanalysis,humanfactors,andpolicymakingtoensuresaferroadenvironmentsandreducethelikelihoodandseverityofaccidentsandinjuries.
4.1.Method
Wesummarizethemethodsusedfortheanalysisoftrafficsafety.
Matched-pairAnalysis.Matched-pairanalysis,alsoknownaspairedanalysisorpairedcomparison,isastatisticalmethodusedtocomparetworelatedsetsofdataorobservations.Itisparticularlyusefulwhenstudyingsituationswhereitisdifficulttoestablishadirectcause-and-effectrelationshipbetweenvariablesorwhendealingwithdatathatexhibitahighdegreeofvariability.Inmatched-pairanalysis,eachobservationinonegrouporconditionispairedormatchedwithacorrespondingobservationintheothergrouporcondition.Thepairingisconductedbasedonsimilaritiesorrelevantcharacteristicsbetweentheobservations,suchasage,sex,orsomeotherrelevantfactor.Thepairingensuresthateachpairofobservationsisassimilaraspossible,exceptforthevariablebeinginvestigated.Bypairingobservations,ithelpstocontrolforindividualdifferencesorconfoundingvariablesthatcouldaffecttheoutcomebeingmeasured.Thisanalysismethodincreasestheprecisionandreducesthepotentialbiasesassociatedwithunpairedcomparisons.Matched-pairanalysiswasappliedin[
6
]toanalyzetherelativecrashriskduringvarioustypesofprecipitation(rain,snow,sleet,andfreezingrain).
MutualInformationTheory.Mutualinformationtheoryisaconceptininformationtheorythatmeasurestheamountofinformationthatissharedortransmittedbetweentworandomvariables.Itquantifiesthedegreeofdependenceorassociationbetweenthevariablesandprovidesameasureofthereductioninuncertaintyaboutonevariablegivenknowledgeoftheothervariable.Entropyisafundamentalconceptininformationtheorythatcharacterizestheuncertaintyorrandomnessofarandomvariable.Itmeasurestheaverageamountofinformationneededtospecifytheoutcomeofarandomvariable.Higher
8of30
Designs2023,7,100
entropyindicateshigheruncertainty.Inaddition,mutualinformationmeasurestheamountofinformationthattworandomvariablesshare.Itquantifiesthereductioninuncertaintyaboutonevariablebyknowingthevalueoftheothervariable.Mathematically,itisthedifferencebetweentheentropyoftheindividualvariablesandthejointentropyofthetwovariables.Ifthemutualinformationishigh,itindicatesastrongrelationshipbetweenthevariables,suggestingthatknowledgeofonevariableprovidessubstantialinformationabouttheothervariable.Overall,mutualinformationtheoryhasproventobeavaluabletoolinvariousdisciplinesthatdealwithdataanalysisandinformationprocessing.Usingmutualinformationtheory,onestudy[
27
]quantifiedtheinteractionsbetweenvariousriskfactors,consideringmultifactorscenarios.
MatchedCaseControl.Thematchedcase-controlapproachcanbeappliedtoanalyzecrashoccurrencesduringspecialscenariossuchasevacuations[
7
,
28
].Thisapproachallowsforathoroughinvestigationofthepotentialriskfactorsorexposuresthatcontributetocrashesinaspecialscenariowhilecontrollingfortheconfoundingvariables.Forexample,theauthorsin[
7
],discussedastudyfocusedonunderstandingthefacto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 注塑機控制課程設(shè)計
- 《親子關(guān)系確認(rèn)制度研究》
- 包裹裝卸合同范例
- 光纖建設(shè)協(xié)議格式3篇
- 土地使用權(quán)轉(zhuǎn)讓合同訴訟途徑3篇
- 合伙辦培訓(xùn)學(xué)校協(xié)議書3篇
- 私自賣車合同范例
- 地彈門施工合同施工合同簽訂要點3篇
- 外教教學(xué)成果評估合同3篇
- 二手房買賣三方合同3篇
- 《統(tǒng)計預(yù)測與決策》
- 污水處理廠臭氣治理方案范本
- 大型中央空調(diào)系統(tǒng)設(shè)計方案
- 血透室對深靜脈導(dǎo)管感染率高要因分析品管圈魚骨圖對策擬定
- PHP編程基礎(chǔ)與實例教程第3版PPT完整全套教學(xué)課件
- 教師跟崗培訓(xùn)個人總結(jié)匯報
- 房山項目物業(yè)服務(wù)費用評估報告終板
- 擋土墻類型與構(gòu)造
- 思維拓展訓(xùn)練五年級教材
- 【員工關(guān)系管理研究國內(nèi)外文獻綜述2800字】
- 數(shù)字媒體藝術(shù)導(dǎo)論課件游戲
評論
0/150
提交評論