版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高中各種函數(shù)圖像畫法與函數(shù)性質(zhì)一次函數(shù)是指函數(shù)的最高次項(xiàng)為一次的函數(shù),通常的形式是y=kx+b,其中k和b為常數(shù)。確定一次函數(shù)的定義域需要考慮以下幾種情況:當(dāng)關(guān)系式為整式時(shí),函數(shù)定義域?yàn)槿w實(shí)數(shù);當(dāng)關(guān)系式含有分式時(shí),分式的分母不等于零;當(dāng)關(guān)系式含有二次根式時(shí),被開放方數(shù)大于等于零;當(dāng)關(guān)系式中含有指數(shù)為零的式子時(shí),底數(shù)不等于零。同時(shí),在實(shí)際問題中,函數(shù)定義域還要和實(shí)際情況相符合,使之有意義。一次函數(shù)的圖象是一條直線,其斜率k可以表示為y隨x的增大而增大或減小,而截距b可以表示為y在x=0時(shí)的值。根據(jù)斜率的正負(fù)和大小,可以判斷函數(shù)的單調(diào)性和增減性。二次函數(shù)是指函數(shù)的最高次項(xiàng)為二次的函數(shù),通常的形式是f(x)=ax^2+bx+c,其中a、b、c為常數(shù)且a不等于0。確定二次函數(shù)的定義域需要考慮分母不等于零的情況,同時(shí),根據(jù)二次函數(shù)的圖像特征,可以得到其對(duì)稱軸、頂點(diǎn)坐標(biāo)、定義域、值域等信息。二次函數(shù)的圖像是一個(gè)開口向上或向下的拋物線,其開口方向和頂點(diǎn)坐標(biāo)可以表示為a的正負(fù)和大小。二次函數(shù)圖像的對(duì)稱有五種情況,分別是關(guān)于x軸、y軸、原點(diǎn)、頂點(diǎn)和任意一點(diǎn)對(duì)稱。對(duì)稱后的解析式可以根據(jù)對(duì)稱軸和頂點(diǎn)坐標(biāo)來確定。反比例函數(shù)是指函數(shù)的形式為y=k/x,其中k為常數(shù)。反比例函數(shù)的圖像是一條以原點(diǎn)為對(duì)稱中心的中心對(duì)稱的雙曲線。a<1時(shí),圖像在R上是減函數(shù)。4.指數(shù)函數(shù)的圖像經(jīng)過點(diǎn)(0,1),且隨著自變量的增大或減小,函數(shù)值不會(huì)超過1或小于0,即指數(shù)函數(shù)的值域?yàn)?0,+∞)。5.指數(shù)函數(shù)的圖像在x軸上不存在水平漸近線,但存在一條y=0的水平漸近線。6.指數(shù)函數(shù)的圖像在y軸左側(cè)存在一條垂直漸近線x=0。7.指數(shù)函數(shù)的圖像在第一象限內(nèi)單調(diào)遞增,在第二象限內(nèi)單調(diào)遞減,在第三象限內(nèi)單調(diào)遞增,在第四象限內(nèi)單調(diào)遞減。8.指數(shù)函數(shù)的圖像在x軸右側(cè)與x軸交于點(diǎn)(1,0),在x軸左側(cè)無交點(diǎn)。9.指數(shù)函數(shù)的圖像在y軸右側(cè)無交點(diǎn),且隨著自變量的增大,函數(shù)值趨近于無限大,即指數(shù)函數(shù)具有無窮增長(zhǎng)性。10.指數(shù)函數(shù)的圖像在y軸左側(cè)存在一個(gè)對(duì)稱點(diǎn)(-1,1/a),即關(guān)于y軸對(duì)稱。11.指數(shù)函數(shù)的圖像在第一象限內(nèi)與y=x有交點(diǎn),且關(guān)于y=x對(duì)稱;在第三象限內(nèi)與y=x無交點(diǎn),但也關(guān)于y=x對(duì)稱。12.指數(shù)函數(shù)的圖像在第二象限內(nèi)與y=-x有交點(diǎn),且關(guān)于y=-x對(duì)稱;在第四象限內(nèi)與y=-x無交點(diǎn),但也關(guān)于y=-x對(duì)稱。1.當(dāng)a<1時(shí),指數(shù)函數(shù)y=ax在定義域R上是減函數(shù)。2.指數(shù)函數(shù)y=ax既不是奇函數(shù)也不是偶函數(shù)。3.比較冪函數(shù)大小的方法:1)當(dāng)?shù)讛?shù)相同時(shí),利用指數(shù)函數(shù)的單調(diào)性進(jìn)行比較;2)當(dāng)?shù)讛?shù)中含有字母時(shí),要注意分類討論;3)當(dāng)?shù)讛?shù)不同,指數(shù)也不同時(shí),需要引入中間量進(jìn)行比較;4)對(duì)多個(gè)數(shù)進(jìn)行比較,可用1或-1作為中間量進(jìn)行比較。4.底數(shù)的平移:在指數(shù)上加上一個(gè)數(shù),圖像會(huì)向左平移;減去一個(gè)數(shù),圖像會(huì)向右平移。在f(x)后加上一個(gè)數(shù),圖像會(huì)向上平移;減去一個(gè)數(shù),圖像會(huì)向下平移。5.對(duì)數(shù)函數(shù):1)對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),即y=loga(x)是y=a^x的反函數(shù);2)因?yàn)橹笖?shù)函數(shù)y=ax的定義域?yàn)?-∞,+∞),值域?yàn)?0,+∞),所以對(duì)數(shù)函數(shù)y=loga(x)的定義域?yàn)?0,+∞),值域?yàn)?-∞,+∞);3)對(duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù),因此它們的圖像對(duì)稱于直線y=x;4)對(duì)數(shù)函數(shù)y=loga(x)(a>,a≠1)的圖像是單調(diào)增加的,且a越大,圖像越陡峭;5)比較對(duì)數(shù)大小的常用方法有:(1)若底數(shù)為同一常數(shù),則可由對(duì)數(shù)函數(shù)的單調(diào)性直接進(jìn)行判斷;(2)若底數(shù)為同一字母,則按對(duì)數(shù)函數(shù)的單調(diào)性對(duì)底數(shù)進(jìn)行分類討論;(3)若底數(shù)不同、真數(shù)相同,則可用換底公式化為同底再進(jìn)行比較;(4)若底數(shù)、真數(shù)都不相同,則常借助1、-1等中間量進(jìn)行比較。6.指數(shù)函數(shù)與對(duì)數(shù)函數(shù)對(duì)比:名稱指數(shù)函數(shù)對(duì)數(shù)函數(shù)一般形y=ax(a>,a≠1)y=loga(x)(a>,a≠1)圖像性質(zhì)在R上單調(diào)增加或減少在(0,+∞)上單調(diào)增加底數(shù)與真數(shù)的關(guān)系底數(shù)和真數(shù)同增或同減底數(shù)增加,真數(shù)增加;底數(shù)減少,真數(shù)減少當(dāng)1時(shí),函數(shù)是嚴(yán)格增函數(shù),當(dāng)01時(shí),函數(shù)是嚴(yán)格減函數(shù);(4)在第二象限內(nèi),函數(shù)是偶函數(shù);(5)在第三象限內(nèi),函數(shù)是嚴(yán)格減函數(shù);(6)在第四象限內(nèi),函數(shù)是奇函數(shù)。當(dāng)0時(shí),冪函數(shù)yx有下列性質(zhì):(1)當(dāng)為奇數(shù)時(shí),函數(shù)是奇函數(shù),當(dāng)為偶數(shù)時(shí),函數(shù)是偶函數(shù);(2)在第一象限內(nèi),當(dāng)為負(fù)偶數(shù)時(shí),函數(shù)是增函數(shù),當(dāng)為負(fù)奇數(shù)時(shí),函數(shù)是減函數(shù);(3)在第二象限內(nèi),函數(shù)是偶函數(shù);(4)在第三象限內(nèi),當(dāng)為負(fù)偶數(shù)時(shí),函數(shù)是減函數(shù),當(dāng)為負(fù)奇數(shù)時(shí),函數(shù)是增函數(shù);(5)在第四象限內(nèi),函數(shù)是奇函數(shù)。冪函數(shù)yx的圖像關(guān)于直線y=x對(duì)稱。當(dāng)1時(shí),圖像位于y=x上方,當(dāng)01時(shí),圖像位于y=x下方。當(dāng)冪函數(shù)的指數(shù)α小于1時(shí),具有以下性質(zhì):圖像通過點(diǎn)(1,1),在第一象限內(nèi)是向下凸的,向上與y軸無限接近,向右無限接近x軸。圖像在第一象限內(nèi)過點(diǎn)(1,1)后,α越大,圖像下降的速度越快。無論α取任何實(shí)數(shù),冪函數(shù)的圖像必然經(jīng)過第一象限,并且不經(jīng)過第四象限。對(duì)于對(duì)號(hào)函數(shù)y=ax+b(a>0,b>0),它在區(qū)間(0,+∞)的圖像類似于符號(hào)“√”,利用對(duì)號(hào)函數(shù)的圖像和均值不等式,當(dāng)x>0時(shí),ax+b≥2√(axb)(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))。由此可得函數(shù)y=ax+b(a>0,b>0,x∈R+)在x=b/a時(shí)有最小值2,特別地,當(dāng)a=b=1時(shí)函數(shù)有最小值2。函數(shù)y=ax+b(a>0,b>0)在區(qū)間(0,b/a)上是減函數(shù),在區(qū)間(b/a,+∞)上是增函數(shù)。因?yàn)閷?duì)號(hào)函數(shù)是奇函數(shù),所以可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度合同模板:公寓租賃合同范本a32篇
- 2025年度快遞加盟店轉(zhuǎn)手合同范本9篇
- 二零二五年度房屋裝修貸款合同2篇
- 二零二五年度新型材料研發(fā)項(xiàng)目專項(xiàng)技術(shù)服務(wù)合同3篇
- 二零二五年度建筑拆除工程承包合同3篇
- 二零二五年度合同糾紛調(diào)解與仲裁服務(wù)合同6篇
- 二零二五年度影視后期剪輯監(jiān)制合同范本3篇
- 通信電路基礎(chǔ)課程設(shè)計(jì)
- 二零二五年度房地產(chǎn)合同管理員安全生產(chǎn)責(zé)任協(xié)議3篇
- 海南體育職業(yè)技術(shù)學(xué)院《馬克思主義原著選讀(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年初級(jí)經(jīng)濟(jì)師之初級(jí)經(jīng)濟(jì)師基礎(chǔ)知識(shí)考試題庫及完整答案【全優(yōu)】
- 眼科慢病管理新思路
- 劉先生家庭投資理財(cái)規(guī)劃方案設(shè)計(jì)
- 2024年度服裝代言合同:明星代言服裝品牌拍攝廣告協(xié)議
- 五年高考真題(2020-2024)分類匯編 政治 專題19 世界多極化 含解析
- 物業(yè)元宵節(jié)活動(dòng)方案
- ISBAR輔助工具在交班中應(yīng)用
- Module 6 Unit 2 It was amazing.(說課稿)-2023-2024學(xué)年外研版(一起)英語五年級(jí)下冊(cè)
- 跑步圖片課件教學(xué)課件
- 房屋租賃合同樣本樣本
- 法務(wù)公司合同范本
評(píng)論
0/150
提交評(píng)論