版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
DataMiningTutorial
Author:SethPaulJamieMacLennanZhaohuiTangScottOveson
Abstract:MicrosoftSQLServer2005providesanintegratedenvironmentforcreating
andworkingwithdataminingmodels.Thistutorialusesfourscenarios,targetedmailing,forecasting,marketbasket,andsequenceclustering,todemonstratehowtousetheminingmodelalgorithms,miningmodelviewers,anddataminingtoolsthatareincludedinthisreleaseofSQLServer.
TheinformationcontainedinthisdocumentrepresentsthecurrentviewofMicrosoftCorporationontheissuesdiscussedasofthedateofpublication.BecauseMicrosoftmustrespondtochangingmarketconditions,itshouldnotbeinterpretedtobeacommitmentonthepartofMicrosoft,andMicrosoftcannotguaranteetheaccuracyofanyinformationpresentedafterthedateofpublication.
Thiswhitepaperisforinformationalpurposesonly.MICROSOFTMAKESNOWARRANTIES,EXPRESSORIMPLIED,ASTOTHEINFORMATIONINTHISDOCUMENT.
Complyingwithallapplicablecopyrightlawsistheresponsibilityoftheuser.Withoutlimitingtherightsundercopyright,nopartofthisdocumentmaybereproduced,storedinorintroducedintoaretrievalsystem,ortransmittedinanyformorbyanymeans(electronic,mechanical,photocopying,recording,orotherwise),orforanypurpose,withouttheexpresswrittenpermissionofMicrosoftCorporation.
Microsoftmayhavepatents,patentapplications,trademarks,copyrights,orotherintellectualpropertyrightscoveringsubjectmatterinthisdocument.ExceptasexpresslyprovidedinanywrittenlicenseagreementfromMicrosoft,thefurnishingofthisdocumentdoesnotgiveyouanylicensetothesepatents,trademarks,copyrights,orotherintellectualproperty.
2003MicrosoftCorporation.Allrightsreserved.
MicrosoftiseitheraregisteredtrademarkoratrademarkofMicrosoftCorporationintheUnitedStatesand/orothercountries.
Thenamesofactualcompaniesandproductsmentionedhereinmaybethetrademarksoftheirrespectiveowner
Introduction
ThedataminingtutorialisdesignedtowalkyouthroughtheprocessofcreatingdataminingmodelsinMicrosoftSQLServer2005.ThedataminingalgorithmsandtoolsinSQLServer2005makeiteasytobuildacomprehensivesolutionforavarietyofprojects,includingmarketbasketanalysis,forecastinganalysis,andtargetedmailinganalysis.Thescenariosforthesesolutionsareexplainedingreaterdetaillaterinthetutorial.
ThemostvisiblecomponentsinSQLServer2005aretheworkspacesthatyouusetocreateandworkwithdataminingmodels.Theonlineanalyticalprocessing(OLAP)anddataminingtoolsareconsolidatedintotwoworkingenvironments:BusinessIntelligenceDevelopmentStudioandSQLServerManagementStudio.UsingBusinessIntelligenceDevelopmentStudio,youcandevelopanAnalysisServicesprojectdisconnectedfromtheserver.Whentheprojectisready,youcandeployittotheserver.Youcanalsoworkdirectlyagainsttheserver.ThemainfunctionofSQLServerManagementStudioistomanagetheserver.Eachenvironmentisdescribedinmoredetaillaterinthisintroduction.Formoreinformationonchoosingbetweenthetwoenvironments,see"ChoosingBetweenSQLServerManagementStudioandBusinessIntelligenceDevelopmentStudio"inSQLServerBooksOnline.
Allofthedataminingtoolsexistinthedataminingeditor.Usingtheeditoryoucanmanageminingmodels,createnewmodels,viewmodels,comparemodels,andcreatepredictionsbasedonexistingmodels.
Afteryoubuildaminingmodel,youwillwanttoexploreit,lookingforinterestingpatternsandrules.Eachminingmodelviewerintheeditoriscustomizedtoexploremodelsbuiltwithaspecificalgorithm.Formoreinformationabouttheviewers,see"ViewingaDataMiningModel"inSQLServerBooksOnline.
Oftenyourprojectwillcontainseveralminingmodels,sobeforeyoucanuseamodeltocreatepredictions,youneedtobeabletodeterminewhichmodelisthemostaccurate.Forthisreason,theeditorcontainsamodelcomparisontoolcalledtheMiningAccuracyCharttab.Usingthistoolyoucancomparethepredictiveaccuracyofyourmodelsanddeterminethebestmodel.
Tocreatepredictions,youwillusetheDataMiningExtensions(DMX)language.DMXextendsSQL,containingcommandstocreate,modify,andpredictagainstminingmodels.FormoreinformationaboutDMX,see"DataMiningExtensions(DMX)Reference"inSQLServerBooksOnline.Becausecreatingapredictioncanbecomplicated,thedataminingeditorcontainsatoolcalledPredictionQueryBuilder,whichallowsyoutobuildqueriesusingagraphicalinterface.YoucanalsoviewtheDMXcodethatisgeneratedbythequerybuilder.
Justasimportantasthetoolsthatyouusetoworkwithandcreatedataminingmodelsarethemechanicsbywhichtheyarecreated.Thekeytocreatingaminingmodelisthedataminingalgorithm.Thealgorithmfindspatternsinthedatathatyoupassit,andittranslatesthemintoaminingmode—itistheenginebehindtheprocess.SQLServer2005includesninealgorithms:
MicrosoftDecisionTrees
MicrosoftClustering
MicrosoftNaiveBayes
MicrosoftSequenceClustering
MicrosoftTimeSeries
MicrosoftAssociation
MicrosoftNeuralNetwork
MicrosoftLinearRegression
MicrosoftLogisticRegression
Usingacombinationoftheseninealgorithms,youcancreatesolutionstocommonbusinessproblems.Thesealgorithmsaredescribedinmoredetaillaterinthistutorial.
Someofthemostimportantstepsincreatingadataminingsolutionareconsolidating,cleaning,andpreparingthedatatobeusedtocreatetheminingmodels.SQLServer2005includestheDataTransformationServices(DTS)workingenvironment,whichcontainstoolsthatyoucanusetoclean,validate,andprepareyourdata.FormoreinformationonusingDTSinconjunctionwithadataminingsolution,see"DTSDataMiningTasksandTransformations"inSQLServerBooksOnline.
InordertodemonstratetheSQLServerdataminingfeatures,thistutorialusesanewsampledatabasecalledAdventureWorksDW.ThedatabaseisincludedwithSQLServer2005,anditsupportsOLAPanddataminingfunctionality.Inordertomakethesampledatabaseavailable,youneedtoselectthesampledatabaseattheinstallationtimeinthe“Advanced”dialogforcomponentselection.
Theaudienceforthistutorialisbusinessanalysts,developers,anddatabaseadministratorswhohaveuseddataminingtoolsbeforeandarefamiliarwithdataminingconcepts.Ifyouarenewtodatamining,download"PreparingandMiningDatawithMicrosoftSQLServer2000andAnalysisServices"(/library/default.asp?url=/servers/books/sqlserver/mining.asp).
AdventureWorks
AdventureWorksDWisbasedonafictionalbicyclemanufacturingcompanynamedAdventureWorksCycles.AdventureWorksproducesanddistributesmetalandcompositebicyclestoNorthAmerican,European,andAsiancommercialmarkets.ThebaseofoperationsislocatedinBothell,Washingtonwith500employees,andseveralregionalsalesteamsarelocatedthroughouttheirmarketbase.
AdventureWorkssellsproductswholesaletospecialtyshopsandtoindividualsthroughtheInternet.Forthedataminingexercises,youwillworkwiththeAdventureWorksDWInternetsalestables,whichcontainrealisticpatternsthatworkwellfordataminingexercises.
FormoreinformationonAdventureWorksCyclessee"SampleDatabasesandBusinessScenarios"inSQLServerBooksOnline.
DatabaseDetails
TheInternetsalesschemacontainsinformationabout9,242customers.Thesecustomersliveinsixcountries,whicharecombinedintothreeregions:
NorthAmerica(83%)
Europe(12%)
Australia(7%)
Thedatabasecontainsdataforthreefiscalyears:2002,2003,and2004.
Theproductsinthedatabasearebrokendownbysubcategory,model,andproduct.
BusinessIntelligenceDevelopmentStudio
BusinessIntelligenceDevelopmentStudioisasetoftoolsdesignedforcreatingbusinessintelligenceprojects.BecauseBusinessIntelligenceDevelopmentStudiowascreatedasanIDEenvironmentinwhichyoucancreateacompletesolution,youworkdisconnectedfromtheserver.Youcanchangeyourdataminingobjectsasmuchasyouwant,butthechangesarenotreflectedontheserveruntilafteryoudeploytheproject.
WorkinginanIDEisbeneficialforthefollowingreasons:
YouhavepowerfulcustomizationtoolsavailabletoconfigureBusinessIntelligenceDevelopmentStudiotosuityourneeds.
YoucanintegrateyourAnalysisServicesprojectwithavarietyofotherbusinessintelligenceprojectsencapsulatingyourentiresolutionintoasingleview.
Fullsourcecontrolintegrationenablesyourentireteamtocollaborateincreatingacompletebusinessintelligencesolution.
TheAnalysisServicesprojectistheentrypointforabusinessintelligencesolution.AnAnalysisServicesprojectencapsulatesminingmodelsandOLAPcubes,alongwithsupplementalobjectsthatmakeuptheAnalysisServicesdatabase.FromBusinessIntelligenceDevelopmentStudio,youcancreateandeditAnalysisServicesobjectswithinaprojectanddeploytheprojecttotheappropriateAnalysisServicesserverorservers.
IfyouareworkingwithanexistingAnalysisServicesproject,youcanalsouseBusinessIntelligenceDevelopmentStudiotoworkconnectedtheserver.Inthisway,changesarereflecteddirectlyontheserverwithouthavingtodeploythesolution.
SQLServerManagementStudio
SQLServerManagementStudioisacollectionofadministrativeandscriptingtoolsforworkingwithMicrosoftSQLServercomponents.ThisworkspacediffersfromBusinessIntelligenceDevelopmentStudiointhatyouareworkinginaconnectedenvironmentwhereactionsarepropagatedtotheserverassoonasyousaveyourwork.
Afterthedatahasbeencleanedandpreparedfordatamining,mostofthetasksassociatedwithcreatingadataminingsolutionareperformedwithinBusinessIntelligenceDevelopmentStudio.UsingtheBusinessIntelligenceDevelopmentStudiotools,youdevelopandtestthedataminingsolution,usinganiterativeprocesstodeterminewhichmodelsworkbestforagivensituation.Whenthedeveloperissatisfiedwiththesolution,itisdeployedtoanAnalysisServicesserver.Fromthispoint,thefocusshiftsfromdevelopmenttomaintenanceanduse,andthusSQLServerManagementStudio.UsingSQLServerManagementStudio,youcanadministeryourdatabaseandperformsomeofthesamefunctionsasinBusinessIntelligenceDevelopmentStudio,suchasviewing,andcreatingpredictionsfromminingmodels.
DataTransformationServices
DataTransformationServices(DTS)comprisestheExtract,Transform,andLoad(ETL)toolsinSQLServer2005.Thesetoolscanbeusedtoperformsomeofthemostimportanttasksindatamining:cleaningandpreparingthedataformodelcreation.Indatamining,youtypicallyperformrepetitivedatatransformationstocleanthedatabeforeusingthedatatotrainaminingmodel.UsingthetasksandtransformationsinDTS,youcancombinedatapreparationandmodelcreationintoasingleDTSpackage.
DTSalsoprovidesDTSDesignertohelpyoueasilybuildandrunpackagescontainingallofthetasksandtransformations.UsingDTSDesigner,youcandeploythepackagestoaserverandrunthemonaregularlyscheduledbasis.Thisisusefulif,forexample,youcollectdataweeklydataandwanttoperformthesamecleaningtransformationseachtimeinanautomatedfashion.
YoucanworkwithaDataTransformationprojectandanAnalysisServicesprojecttogetheraspartofabusinessintelligencesolution,byaddingeachprojecttoasolutioninBusinessIntelligenceDevelopmentStudio.
MiningModelAlgorithms
Dataminingalgorithmsarethefoundationfromwhichminingmodelsarecreated.ThevarietyofalgorithmsincludedinSQLServer2005allowsyoutoperformmanytypesofanalysis.Formorespecificinformationaboutthealgorithmsandhowtheycanbeadjustedusingparameters,see"DataMiningAlgorithms"inSQLServerBooksOnline.
MicrosoftDecisionTrees
TheMicrosoftDecisionTreesalgorithmsupportsbothclassificationandregressionanditworkswellforpredictivemodeling.Usingthealgorithm,youcanpredictbothdiscreteandcontinuousattributes.
Inbuildingamodel,thealgorithmexamineshoweachinputattributeinthedatasetaffectstheresultofthepredictedattribute,andthenitusestheinputattributeswiththestrongestrelationshiptocreateaseriesofsplits,callednodes.Asnewnodesareaddedtothemodel,atreestructurebeginstoform.Thetopnodeofthetreedescribesthebreakdownofthepredictedattributeovertheoverallpopulation.Eachadditionalnodeiscreatedbasedonthedistributionofstatesofthepredictedattributeascomparedtotheinputattributes.Ifaninputattributeisseentocausethepredictedattributetofavoronestateoveranother,anewnodeisaddedtothemodel.Themodelcontinuestogrowuntilnoneoftheremainingattributescreateasplitthatprovidesanimprovedpredictionovertheexistingnode.Themodelseekstofindacombinationofattributesandtheirstatesthatcreatesadisproportionatedistributionofstatesinthepredictedattribute,thereforeallowingyoutopredicttheoutcomeofthepredictedattribute.
MicrosoftClustering
TheMicrosoftClusteringalgorithmusesiterativetechniquestogrouprecordsfromadatasetintoclusterscontainingsimilarcharacteristics.Usingtheseclusters,youcanexplorethedata,learningmoreabouttherelationshipsthatexist,whichmaynotbeeasytoderivelogicallythroughcasualobservation.Additionally,youcancreatepredictionsfromtheclusteringmodelcreatedbythealgorithm.Forexample,consideragroupofpeoplewholiveinthesameneighborhood,drivethesamekindofcar,eatthesamekindoffood,andbuyasimilarversionofaproduct.Thisisaclusterofdata.Anotherclustermayincludepeoplewhogotothesamerestaurants,havesimilarsalaries,andvacationtwiceayearoutsidethecountry.Observinghowtheseclustersaredistributed,youcanbetterunderstandhowtherecordsinadatasetinteract,aswellashowthatinteractionaffectstheoutcomeofapredictedattribute.
MicrosoftNaiveBayes
TheMicrosoftNaiveBayesalgorithmquicklybuildsminingmodelsthatcanbeusedforclassificationandprediction.Itcalculatesprobabilitiesforeachpossiblestateoftheinputattribute,giveneachstateofthepredictableattribute,whichcanlaterbeusedtopredictanoutcomeofthepredictedattributebasedontheknowninputattributes.Theprobabilitiesusedtogeneratethemodelarecalculatedandstoredduringtheprocessingofthecube.Thealgorithmsupportsonlydiscreteordiscretizedattributes,anditconsidersallinputattributestobeindependent.TheMicrosoftNaiveBayesalgorithmproducesasimpleminingmodelthatcanbeconsideredastartingpointinthedataminingprocess.Becausemostofthecalculationsusedincreatingthemodelaregeneratedduringcubeprocessing,resultsarereturnedquickly.Thismakesthemodelagoodoptionforexploringthedataandfordiscoveringhowvariousinputattributesaredistributedinthedifferentstatesofthepredictedattribute.
MicrosoftTimeSeries
TheMicrosoftTimeSeriesalgorithmcreatesmodelsthatcanbeusedtopredictcontinuousvariablesovertimefrombothOLAPandrelationaldatasources.Forexample,youcanusetheMicrosoftTimeSeriesalgorithmtopredictsalesandprofitsbasedonthehistoricaldatainacube.
Usingthealgorithm,youcanchooseoneormorevariablestopredict,buttheymustbecontinuous.Youcanhaveonlyonecaseseriesforeachmodel.Thecaseseriesidentifiesthelocationinaseries,suchasthedatewhenlookingatsalesoveralengthofseveralmonthsoryears.
Acasemaycontainasetofvariables(forexample,salesatdifferentstores).TheMicrosoftTimeSeriesalgorithmcanusecross-variablecorrelationsinitspredictions.Forexample,priorsalesatonestoremaybeusefulinpredictingcurrentsalesatanotherstore.
MicrosoftAssociation
TheMicrosoftAssociationalgorithmisspecificallydesignedforuseinmarketbasketanalyses.Thealgorithmconsiderseachattribute/valuepair(suchasproduct/bicycle)asanitem.Anitemsetisacombinationofitemsinasingletransaction.Thealgorithmscansthroughthedatasettryingtofinditemsetsthattendtoappearinmanytransactions.TheSUPPORTparameterdefineshowmanytransactionstheitemsetmustappearinbeforeitisconsideredsignificant.Forexample,afrequentitemsetmaycontain{Gender="Male”,MaritalStatus="Married",Age="30-35"}.Eachitemsethasasize,whichisnumberofitemsitcontains.Inthiscase,thesizeis3.
Oftenassociationmodelsworkagainstdatasetscontainingnestedtables,suchasacustomerlistfollowedbyanestedpurchasestable.Ifanestedtableexistsinthedataset,eachnestedkey(suchasaproductinthepurchasestable)isconsideredanitem.
TheMicrosoftAssociationalgorithmalsofindsrulesassociatedwithitemsets.AruleinanassociationmodellookslikeA,B=>C(associatedwithaprobabilityofoccurring),whereA,B,Careallfrequentitemsets.The'=>'impliesthatCispredictedbyAandB.Theprobabilitythresholdisaparameterthatdeterminestheminimumprobabilitybeforearulecanbeconsidered.Theprobabilityisalsocalled"confidence"indataminingliterature.
Associationmodelsarealsousefulforcrosssellorcollaborativefiltering.Forexample,youcanuseanassociationmodeltopredictitemsausermaywanttopurchasebasedonotheritemsintheirbasket.
MicrosoftSequenceClustering
TheMicrosoftSequenceClusteringalgorithmanalyzessequence-orienteddatathatcontainsdiscrete-valuedseries.Usuallythesequenceattributeintheseriesholdsasetofeventswithaspecificorder(suchasaclickpath).Byanalyzingthetransitionbetweenstatesofthesequence,thealgorithmcanpredictfuturestatesinrelatedsequences.
TheMicrosoftSequenceClusteringalgorithmisahybridofsequenceandclusteringalgorithms.Thealgorithmgroupsmultiplecaseswithsequenceattributesintosegmentsbasedonsimilaritiesofthesesequences.AtypicalusagescenarioforthisalgorithmisWebcustomeranalysisforaportalsite.AportalWebsitehasasetofaffiliateddomainssuchasNews,Weather,Money,Mail,andSport.EachWebcustomerisassociatedwithasequenceofWebclicksonthesedomains.TheMicrosoftSequenceClusteringalgorithmcangrouptheseWebcustomersintomore-or-lesshomogenousgroupsbasedontheirnavigationspatterns.Thesegroupscanthenbevisualized,providingadetailedunderstandingofhowcustomersareusingthesite.
MicrosoftNeuralNetwork
InMicrosoftSQLServer2005AnalysisServices,theMicrosoftNeuralNetworkalgorithmcreatesclassificationandregressionminingmodelsbyconstructingamultilayerperceptronnetworkofneurons.SimilartotheMicrosoftDecisionTreesalgorithmprovider,giveneachstateofthepredictableattribute,thealgorithmcalculatesprobabilitiesforeachpossiblestateoftheinputattribute.Thealgorithmproviderprocessestheentiresetofcases,iterativelycomparingthepredictedclassificationofthecaseswiththeknownactualclassificationofthecases.Theerrorsfromtheinitialclassificationofthefirstiterationoftheentiresetofcasesisfedbackintothenetwork,andusedtomodifythenetwork'sperformanceforthenextiteration,andsoon.Youcanlaterusetheseprobabilitiestopredictanoutcomeofthepredictedattribute,basedontheinputattributes.OneoftheprimarydifferencesbetweenthisalgorithmandtheMicrosoftDecisionTreesalgorithm,however,isthatitslearningprocessistooptimizenetworkparameterstowardminimizingtheerrorwhiletheMicrosoftDecisionTreesalgorithmsplitsrulesinordertomaximizeinformationgain.Thealgorithmsupportsthepredictionofbothdiscreteandcontinuousattributes.
MicrosoftLinearRegression
TheMicrosoftLinearRegressionalgorithmisaparticularconfigurationoftheMicrosoftDecisionTreesalgorithm,obtainedbydisablingsplits(thewholeregressionformulaisbuiltinasinglerootnode).Thealgorithmsupportsthepredictionofcontinuousattributes.
MicrosoftLogisticRegression
TheMicrosoftLogisticRegressionalgorithmisaparticularconfigurationoftheMicrosoftNeuralNetworkalgorithm,obtainedbyeliminatingthehiddenlayer.Thealgorithmsupportsthepredictionofbothdiscreteandcontinuousattributes.
WorkingThroughtheTutorial
ThroughoutthistutorialyouwillworkinBusinessIntelligenceDevelopmentStudio(asdepictedinFigure1).FormoreinformationaboutworkinginBusinessIntelligenceDevelopmentStudio,see"UsingSQLServerManagementStudio"inSQLServerBooksOnline.
Figure1BusinessIntelligenceStudio
Thetutorialisbrokenupintothreesections:PreparingtheSQLServerDatabase,PreparingtheAnalysisServicesDatabase,andBuildingandWorkingwiththeMiningModels.
PreparingtheSQLServerDatabase
TheAdventureWorksDWdatabase,whichisthebasisforthistu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八年級語文下冊 第五單元教學(xué)實錄 新人教版
- 幼兒園小班安全工作計劃15篇
- 小學(xué)高級教師申報述職報告匯編5篇
- 2024-2025學(xué)年新教材高中生物 第四章 生物的變異 第四節(jié) 人類遺傳病是可以檢測和預(yù)防的教學(xué)實錄(2)浙科版必修2
- 湖南省益陽市八年級地理下冊 8.1 自然特征與農(nóng)業(yè)(西北地區(qū))知識梳理型教學(xué)實錄 (新版)湘教版
- 軍訓(xùn)心得體會23篇
- 工作業(yè)績個人總結(jié)2022十篇
- 2024年版3D打印設(shè)備采購合同
- 2024年股權(quán)轉(zhuǎn)讓合同及附屬協(xié)議
- 八年級語文上冊 第五單元 24大道之行也教學(xué)實錄 新人教版
- 兒童食物過敏的流行病學(xué)調(diào)查與風(fēng)險因素分析
- 云邊有個小賣部詳細(xì)介紹
- 2023南頭古城項目簡介招商手冊
- 核心期刊投稿指南課件
- 職業(yè)院校技能大賽模塊一展廳銷售裁判情境
- 2023-2024學(xué)年四川省成都市錦江區(qū)重點中學(xué)八年級(上)期末數(shù)學(xué)試卷(含解析)
- 嚴(yán)重精神障礙患者管理課件
- 杏樹主要病蟲害及其防治方法
- 人身安全及注意事項
- ACL導(dǎo)管維護(hù)三步曲臨床應(yīng)用
- 有機肥料及微生物肥料行業(yè)的技術(shù)創(chuàng)新與知識產(chǎn)權(quán)保護(hù)
評論
0/150
提交評論