一輪復(fù)習(xí)人教A版11.4抽樣方法與總體分布的估計(jì)(十年高考)作業(yè)_第1頁(yè)
一輪復(fù)習(xí)人教A版11.4抽樣方法與總體分布的估計(jì)(十年高考)作業(yè)_第2頁(yè)
一輪復(fù)習(xí)人教A版11.4抽樣方法與總體分布的估計(jì)(十年高考)作業(yè)_第3頁(yè)
一輪復(fù)習(xí)人教A版11.4抽樣方法與總體分布的估計(jì)(十年高考)作業(yè)_第4頁(yè)
一輪復(fù)習(xí)人教A版11.4抽樣方法與總體分布的估計(jì)(十年高考)作業(yè)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

抽樣方法與總體分布的估計(jì)考點(diǎn)一隨機(jī)抽樣1.(2015湖南文,2,5分)在一次馬拉松比賽中,35名運(yùn)動(dòng)員的成績(jī)(單位:分鐘)的莖葉圖如圖所示.若將運(yùn)動(dòng)員按成績(jī)由好到差編為1~35號(hào),再用系統(tǒng)抽樣方法從中抽取7人,則其中成績(jī)?cè)趨^(qū)間[139,151]上的運(yùn)動(dòng)員人數(shù)是()答案B從35人中用系統(tǒng)抽樣方法抽取7人,則可將這35人分成7組,每組5人,從每一組中抽取1人,而成績(jī)?cè)赱139,151]上的有4組,所以抽取4人,故選B.2.(2015北京文,4,5分)某校老年、中年和青年教師的人數(shù)見(jiàn)下表.采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有320人,則該樣本中的老年教師人數(shù)為()類(lèi)別人數(shù)老年教師900中年教師1800青年教師1600合計(jì)4300答案C本題考查分層抽樣,根據(jù)樣本中的青年教師有320人,且青年教師與老年教師人數(shù)的比為1600∶900=16∶9,可以得到樣本中的老年教師的人數(shù)為916×320=180,故選3.(2014重慶文,3,5分)某中學(xué)有高中生3500人,初中生1500人.為了解學(xué)生的學(xué)習(xí)情況,用分層抽樣的方法從該校學(xué)生中抽取一個(gè)容量為n的樣本,已知從高中生中抽取70人,則n為()答案A由分層抽樣的特點(diǎn)可知703500=n3500+1500,4.(2017山東文,8,5分)如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件).若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x和y的值分別為()A.3,5B.5,5C.3,7D.5,7答案A由莖葉圖,可得甲組數(shù)據(jù)的中位數(shù)為65,從而乙組數(shù)據(jù)的中位數(shù)也是65,所以y=5.由乙組數(shù)據(jù)59,61,67,65,78,可得乙組數(shù)據(jù)的平均值為66,故甲組數(shù)據(jù)的平均值也為66,從而有56+62+65+74+70+x5=66,解得x=3.5.(2016山東,理3文3,5分)某高校調(diào)查了200名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時(shí)間不少于小時(shí)的人數(shù)是()答案D由頻率分布直方圖知這200名學(xué)生每周的自習(xí)時(shí)間不少于小時(shí)的頻率為1-(0.02+0.10)×2.5=0.7,則這200名學(xué)生中每周的自習(xí)時(shí)間不少于小時(shí)的人數(shù)為200×0.7=140,故選D.6.(2016課標(biāo)Ⅲ理,4,5分)某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中A點(diǎn)表示十月的平均最高氣溫約為15℃,B點(diǎn)表示四月的平均最低氣溫約為5℃.下面敘述不正確的是()A.各月的平均最低氣溫都在0℃以上B.七月的平均溫差比一月的平均溫差大C.三月和十一月的平均最高氣溫基本相同D.平均最高氣溫高于20℃的月份有5個(gè)答案D由雷達(dá)圖易知A、C正確;七月的平均最高氣溫超過(guò)20℃,平均最低氣溫約為12℃,一月的平均最高氣溫約為6℃,平均最低氣溫約為2℃,所以七月的平均溫差比一月的平均溫差大,故B正確;由雷達(dá)圖知平均最高氣溫超過(guò)20℃的月份有3個(gè)月.故選D.7.(2015課標(biāo)Ⅱ理,3,5分)根據(jù)下面給出的2004年至2013年我國(guó)二氧化硫年排放量(單位:萬(wàn)噸)柱形圖,以下結(jié)論中不正確的是()A.逐年比較,2008年減少二氧化硫排放量的效果最顯著年我國(guó)治理二氧化硫排放顯現(xiàn)成效年以來(lái)我國(guó)二氧化硫年排放量呈減少趨勢(shì)006年以來(lái)我國(guó)二氧化硫年排放量與年份正相關(guān)答案D由柱形圖可知:A、B、C均正確,2006年以來(lái)我國(guó)二氧化硫年排放量在逐漸減少,所以排放量與年份負(fù)相關(guān),∴D不正確.8.(2015陜西理,2,5分)某中學(xué)初中部共有110名教師,高中部共有150名教師,其性別比例如圖所示,則該校女教師的人數(shù)為()答案B初中部女教師的人數(shù)為110×70%=77,高中部女教師的人數(shù)為150×(1-60%)=60,則該校女教師的人數(shù)為77+60=137,故選B.9.(2015福建文,13,4分)某校高一年級(jí)有900名學(xué)生,其中女生400名.按男女比例用分層抽樣的方法,從該年級(jí)學(xué)生中抽取一個(gè)容量為45的樣本,則應(yīng)抽取的男生人數(shù)為.

答案25解析男生人數(shù)為900-400=500.設(shè)應(yīng)抽取男生x人,則由45900=x500得x=25.即應(yīng)抽取男生2510.(2014天津理,9,5分)某大學(xué)為了解在校本科生對(duì)參加某項(xiàng)社會(huì)實(shí)踐活動(dòng)的意向,擬采用分層抽樣的方法,從該校四個(gè)年級(jí)的本科生中抽取一個(gè)容量為300的樣本進(jìn)行調(diào)查.已知該校一年級(jí)、二年級(jí)、三年級(jí)、四年級(jí)的本科生人數(shù)之比為4∶5∶5∶6,則應(yīng)從一年級(jí)本科生中抽取名學(xué)生.

答案60解析420×300=60(名11.(2012天津理,9,5分)某地區(qū)有小學(xué)150所,中學(xué)75所,大學(xué)25所.現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取30所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查,應(yīng)從小學(xué)中抽取所學(xué)校,中學(xué)中抽取所學(xué)校.

答案18;9解析應(yīng)從小學(xué)中抽取150150+75+25×30=18(所應(yīng)從中學(xué)中抽取75150+75+25×30=9(所評(píng)析本題考查分層抽樣及數(shù)據(jù)處理能力.12.(2012福建文,14,4分)一支田徑隊(duì)有男女運(yùn)動(dòng)員98人,其中男運(yùn)動(dòng)員有56人.按男女比例用分層抽樣的方法,從全體運(yùn)動(dòng)員中抽出一個(gè)容量為28的樣本,那么應(yīng)抽取女運(yùn)動(dòng)員人數(shù)是.

答案12解析男女運(yùn)動(dòng)員人數(shù)比例為5698-56分層抽樣中男女人數(shù)比例不變,則女運(yùn)動(dòng)員人數(shù)為28×37=12.故應(yīng)抽取女運(yùn)動(dòng)員人數(shù)是評(píng)析本題考查分層抽樣方法.考查學(xué)生運(yùn)算求解能力.考點(diǎn)二用樣本估計(jì)總體1.(2022全國(guó)甲,理2,文2,5分,應(yīng)用性)某社區(qū)通過(guò)公益講座以普及社區(qū)居民的垃圾分類(lèi)知識(shí).為了解講座效果,隨機(jī)抽取10位社區(qū)居民,讓他們?cè)谥v座前和講座后各回答一份垃圾分類(lèi)知識(shí)問(wèn)卷,這10位社區(qū)居民在講座前和講座后問(wèn)卷答題的正確率如下圖:則()A.講座前問(wèn)卷答題的正確率的中位數(shù)小于70%B.講座后問(wèn)卷答題的正確率的平均數(shù)大于85%C.講座前問(wèn)卷答題的正確率的標(biāo)準(zhǔn)差小于講座后正確率的標(biāo)準(zhǔn)差D.講座后問(wèn)卷答題的正確率的極差大于講座前正確率的極差答案B對(duì)于A項(xiàng),將講座前的10個(gè)數(shù)據(jù)從小到大排列依次為60%,60%,65%,65%,70%,75%,80%,85%,90%,95%,易知這10個(gè)數(shù)據(jù)的中位數(shù)是第5個(gè)與第6個(gè)數(shù)據(jù)的平均數(shù),為70%+75%2=72.5%>70%,故A錯(cuò)誤對(duì)于B項(xiàng),x后=110×(90%+85%+80%+90%+85%+85%+95%+100%+85%+100%)=89.5%>85%,對(duì)于C項(xiàng),x前=110×(60%+60%+65%+65%+70%+75%+80%+85%+90%+95%)=74.5%,s前=110s后=110×[(90%-89.5%)2+…+(100%-89.5%)2]=6.5%,11.93對(duì)于D項(xiàng),講座前問(wèn)卷答題的正確率的極差為95%-60%=35%,講座后問(wèn)卷答題的正確率的極差為100%-80%=20%,20%<35%,故D錯(cuò)誤.故選B.2.(2021全國(guó)甲理,2,5分)為了解某地農(nóng)村經(jīng)濟(jì)情況,對(duì)該地農(nóng)戶家庭年收入進(jìn)行抽樣調(diào)查,將農(nóng)戶家庭年收入的調(diào)查數(shù)據(jù)整理得到如下頻率分布直方圖:根據(jù)此頻率分布直方圖,下面結(jié)論中不正確的是()A.該地農(nóng)戶家庭年收入低于4.5萬(wàn)元的農(nóng)戶比率估計(jì)為6%B.該地農(nóng)戶家庭年收入不低于10.5萬(wàn)元的農(nóng)戶比率估計(jì)為10%C.估計(jì)該地農(nóng)戶家庭年收入的平均值不超過(guò)6.5萬(wàn)元D.估計(jì)該地有一半以上的農(nóng)戶,其家庭年收入介于4.5萬(wàn)元至8.5萬(wàn)元之間答案C解題指導(dǎo):利用頻率分布直方圖估計(jì)頻率,再將頻率轉(zhuǎn)化為比率.解析由頻率分布直方圖可得,該地農(nóng)戶家庭年收入低于4.5萬(wàn)元和不低于10.5萬(wàn)元的頻率分別為0.06和0.1,則農(nóng)戶比率分別為6%和10%,故A、B中結(jié)論正確;家庭年收入介于4.5萬(wàn)元和8.5萬(wàn)元之間的頻率為0.1+0.14+0.2+0.2=0.64,故D中結(jié)論正確;家庭年收入的平均值為0.02×3+0.04×4+0.1×5+0.14×6+0.2×7+0.2×8+0.1×9+0.1×10+0.04×11+0.02×12+0.02×13+0.02×14=7.68萬(wàn)元,因?yàn)?.68>6.5,所以估計(jì)該地區(qū)農(nóng)戶家庭年收入的平均值超過(guò)6.5萬(wàn)元,故C中結(jié)論不正確.故選C.3.(多選)(2021新高考Ⅰ,9,5分)有一組樣本數(shù)據(jù)x1,x2,…,xn,由這組數(shù)據(jù)得到新樣本數(shù)據(jù)y1,y2,…,yn,其中yi=xi+c(i=1,2,…,n),c為非零常數(shù),則()A.兩組樣本數(shù)據(jù)的樣本平均數(shù)相同B.兩組樣本數(shù)據(jù)的樣本中位數(shù)相同C.兩組樣本數(shù)據(jù)的樣本標(biāo)準(zhǔn)差相同D.兩組樣本數(shù)據(jù)的樣本極差相同答案CDA項(xiàng),設(shè)x=1ni=1nxi,則y=1ni=1nyi=1ni=1n(x所以x≠y,所以AB項(xiàng),因?yàn)閥i=xi+c(i=1,2,…,n),所以y1,y2,…,yn的中位數(shù)是x1,x2,…,xn的中位數(shù)加c,所以B選項(xiàng)錯(cuò)誤.C項(xiàng),設(shè)s12=1ni=1n(xi-x)2,s所以s22=1ni=1n(xi+c-x-c)2=1所以s1所以兩組數(shù)據(jù)的方差相同,從而這兩組數(shù)據(jù)的標(biāo)準(zhǔn)差相同,所以C選項(xiàng)正確.D項(xiàng),設(shè)x1<x2<…<xn,則第一組數(shù)據(jù)的極差為xn-x1,設(shè)y1<y2<…<yn,則第二組數(shù)據(jù)的極差為yn-y1=(xn+c)-(x1+c)=xn-x1,所以兩組數(shù)據(jù)的極差相同,所以D選項(xiàng)正確,故選CD.4.(2015安徽理,6,5分)若樣本數(shù)據(jù)x1,x2,…,x10的標(biāo)準(zhǔn)差為8,則數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的標(biāo)準(zhǔn)差為()答案C設(shè)樣本數(shù)據(jù)x1,x2,…,x10的標(biāo)準(zhǔn)差為s,則s=8,可知數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的標(biāo)準(zhǔn)差為2s=16.5.(2014陜西文,9,5分)某公司10位員工的月工資(單位:元)為x1,x2,…,x10,其均值和方差分別為x和s2,若從下月起每位員工的月工資增加100元,則這10位員工下月工資的均值和方差分別為()A.x,s2+1002B.x+100,s2+1002C.x,s2D.x+100,s2答案D設(shè)增加工資后10位員工下月工資均值為x',方差為s'2,則x'=110[(x1+100)+(x2+100)+…+(x10+100)]=110(x1+x2+…+x10)+100=x+100;方差s'2=110[(x1+100-x')2+(x2+100-x')2+…+(x10+100-x')2]=110[(x1-x)2+(x2-x)2+…+(x10-x)2]=s6.(2011江蘇,6,5分)某老師從星期一到星期五收到的信件數(shù)分別為10,6,8,5,6,則該組數(shù)據(jù)的方差s2=.

答案16解析記星期一到星期五收到的信件數(shù)分別為x1,x2,x3,x4,x5,則x=x1+x∴s2=15[(x1-x)2+(x2-x)2+(x3-x)2+(x4-x)2+(x5-x)2]=15[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=評(píng)析本題主要考查方差的公式,考查學(xué)生的運(yùn)算求解能力.公式記憶準(zhǔn)確,運(yùn)算無(wú)誤是解答本題的關(guān)鍵,屬中等難度題.7.(2015湖北文,14,5分)某電子商務(wù)公司對(duì)10000名網(wǎng)絡(luò)購(gòu)物者2014年度的消費(fèi)情況進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)消費(fèi)金額(單位:萬(wàn)元)都在區(qū)間[0.3,0.9]內(nèi),其頻率分布直方圖如圖所示.(1)直方圖中的a=;

(2)在這些購(gòu)物者中,消費(fèi)金額在區(qū)間[0.5,0.9]內(nèi)的購(gòu)物者的人數(shù)為.

答案(1)3(2)6000解析(1)由頻率分布直方圖可知:×(0.2+0.8+1.5+2.0+2.5+a)=1,解得a=3.(2)消費(fèi)金額在區(qū)間[0.5,0.9]內(nèi)的購(gòu)物者的頻率為×(3.0+2.0+0.8+0.2)=0.6,所以所求購(gòu)物者的人數(shù)為×10000=6000.8.(2014江蘇文,6,5分)為了了解一片經(jīng)濟(jì)林的生長(zhǎng)情況,隨機(jī)抽測(cè)了其中60株樹(shù)木的底部周長(zhǎng)(單位:cm),所得數(shù)據(jù)均在區(qū)間[80,130]上,其頻率分布直方圖如圖所示,則在抽測(cè)的60株樹(shù)木中,有株樹(shù)木的底部周長(zhǎng)小于100cm.

答案24解析60×(0.015+0.025)×10=24(株).9.(2019課標(biāo)Ⅱ,理13文14,5分)我國(guó)高鐵發(fā)展迅速,技術(shù)先進(jìn).經(jīng)統(tǒng)計(jì),在經(jīng)停某站的高鐵列車(chē)中,有10個(gè)車(chē)次的正點(diǎn)率為0.97,有20個(gè)車(chē)次的正點(diǎn)率為0.98,有10個(gè)車(chē)次的正點(diǎn)率為0.99,則經(jīng)停該站高鐵列車(chē)所有車(chē)次的平均正點(diǎn)率的估計(jì)值為.

答案解析本題考查離散型隨機(jī)變量的均值計(jì)算;考查抽象概括能力和運(yùn)算求解能力;考查的核心素養(yǎng)為數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算.設(shè)經(jīng)停該站高鐵列車(chē)所有車(chē)次中正點(diǎn)率為的事件為A,正點(diǎn)率為的事件為B,正點(diǎn)率為的事件為C,則用頻率估計(jì)概率有P(A)=1010+20+10=14,P(B)=2010+20+10=12,P(C)=1010+20+10=14,所以經(jīng)停該站高鐵列車(chē)所有車(chē)次的平均正點(diǎn)率的估計(jì)值為×10.(2021全國(guó)乙理,17,12分)某廠研制了一種生產(chǎn)高精產(chǎn)品的設(shè)備,為檢驗(yàn)新設(shè)備生產(chǎn)產(chǎn)品的某項(xiàng)指標(biāo)有無(wú)提高,用一臺(tái)舊設(shè)備和一臺(tái)新設(shè)備各生產(chǎn)了10件產(chǎn)品,得到各件產(chǎn)品該項(xiàng)指標(biāo)數(shù)據(jù)如下:舊設(shè)備9.810.310.010.29.99.810.010.110.29.7新設(shè)備10.110.410.110.010.110.310.610.510.410.5舊設(shè)備和新設(shè)備生產(chǎn)產(chǎn)品的該項(xiàng)指標(biāo)的樣本平均數(shù)分別記為x和y,樣本方差分別記為(1)求x,(2)判斷新設(shè)備生產(chǎn)產(chǎn)品的該項(xiàng)指標(biāo)的均值較舊設(shè)備是否有顯著提高如果y-x≥2s12+解析(1)x=110×(9.8+10.3+10.0+10.2+9.9+9.8+10.0+10.1+10.2+9.7y=110×(10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.5)=10s12=110×(0.22+0.32+02+0.22+0.12+0.22+02+0.12+0.22+0.32s22=110×(0.22+0.12+0.22+0.32+0.22+02+0.32+0.22+0.12+0.22(2)∵y-x=10.3-10=0.3=310=1550,2易錯(cuò)警示1.要牢記數(shù)據(jù)方差的計(jì)算公式;2.注意數(shù)據(jù)計(jì)算的準(zhǔn)確性.11.(2022新高考Ⅱ,19,12分,應(yīng)用性)在某地區(qū)進(jìn)行流行病學(xué)調(diào)查,隨機(jī)調(diào)查了100位某種疾病患者的年齡,得到如下的樣本數(shù)據(jù)的頻率分布直方圖:(1)估計(jì)該地區(qū)這種疾病患者的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);(2)估計(jì)該地區(qū)一位這種疾病患者的年齡位于區(qū)間[20,70)的概率;(3)已知該地區(qū)這種疾病的患病率為0.1%,該地區(qū)年齡位于區(qū)間[40,50)的人口占該地區(qū)總?cè)丝诘?6%.從該地區(qū)中任選一人,若此人的年齡位于區(qū)間[40,50),求此人患這種疾病的概率(以樣本數(shù)據(jù)中患者的年齡位于各區(qū)間的頻率作為患者的年齡位于該區(qū)間的概率,精確到0.0001).解析(1)平均年齡為(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023+55×0.020+65×0.017+75×0.006+85×0.002)×10=47.9(歲).(2)設(shè)事件A=“該地區(qū)一位這種疾病患者的年齡位于區(qū)間[20,70)”,則P(A)=1-P(A)=1-(0.001+0.002+0.006+0.002)×10=1-0.11=0.89.(3)設(shè)事件B=“任選一人年齡位于區(qū)間[40,50)”,事件C=“任選一人患這種疾病”,由條件概率公式可得P(C|B)=P(BC)P(B12.(2022全國(guó)乙,理19,文19,12分,應(yīng)用性)某地經(jīng)過(guò)多年的環(huán)境治理,已將荒山改造成了綠水青山.為估計(jì)一林區(qū)某種樹(shù)木的總材積量,隨機(jī)選取了10棵這種樹(shù)木,測(cè)量每棵樹(shù)的根部橫截面積(單位:m2)和材積量(單位:m3),得到如下數(shù)據(jù):樣本號(hào)i12345678910總和根部橫截面積xi0.040.060.040.080.080.050.050.070.070.060.6材積量yi0.250.400.220.540.510.340.360.460.420.403.9并計(jì)算得i=110xi2=0.038,i=110yi2=1.6158(1)估計(jì)該林區(qū)這種樹(shù)木平均一棵的根部橫截面積與平均一棵的材積量;(2)求該林區(qū)這種樹(shù)木的根部橫截面積與材積量的樣本相關(guān)系數(shù)(精確到0.01);(3)現(xiàn)測(cè)量了該林區(qū)所有這種樹(shù)木的根部橫截面積,并得到所有這種樹(shù)木的根部橫截面積總和為186m2.已知樹(shù)木的材積量與其根部橫截面積近似成正比.利用以上數(shù)據(jù)給出該林區(qū)這種樹(shù)木的總材積量的估計(jì)值.附:相關(guān)系數(shù)i=1n(xi-x解析(1)估計(jì)該林區(qū)這種樹(shù)木平均一棵的根部橫截面積為x=0.610=0.06(平均一棵的材積量為y=3.910=0.39(m(2)樣本相關(guān)系數(shù)i=1=i=0.2474-10×0.06×0.39=0.01340.002×0.0948=0.01340.01即該林區(qū)這種樹(shù)木的根部橫截面積與材積量的樣本相關(guān)系數(shù)約為0.97.(3)設(shè)這種樹(shù)木的根部橫截總面積為Xm2,總材積量為Ym3,則XY=xy,則Y所以該林區(qū)這種樹(shù)木的總材積量的估計(jì)值為1209m3.

13.(2019課標(biāo)Ⅱ文,19,12分)某行業(yè)主管部門(mén)為了解本行業(yè)中小企業(yè)的生產(chǎn)情況,隨機(jī)調(diào)查了100個(gè)企業(yè),得到這些企業(yè)第一季度相對(duì)于前一年第一季度產(chǎn)值增長(zhǎng)率y的頻數(shù)分布表.y的分組[-0.20,0)[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企業(yè)數(shù)22453147(1)分別估計(jì)這類(lèi)企業(yè)中產(chǎn)值增長(zhǎng)率不低于40%的企業(yè)比例、產(chǎn)值負(fù)增長(zhǎng)的企業(yè)比例;(2)求這類(lèi)企業(yè)產(chǎn)值增長(zhǎng)率的平均數(shù)與標(biāo)準(zhǔn)差的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).(精確到0.01)附:74≈8.602.解析本題考查了統(tǒng)計(jì)的基礎(chǔ)知識(shí)、基本思想和方法,考查學(xué)生對(duì)頻數(shù)分布表的理解與應(yīng)用,考查樣本的平均數(shù),標(biāo)準(zhǔn)差等數(shù)字特征的計(jì)算方法,以及對(duì)現(xiàn)實(shí)社會(huì)中實(shí)際數(shù)據(jù)的分析處理能力.(1)根據(jù)產(chǎn)值增長(zhǎng)率頻數(shù)分布表得,所調(diào)查的100個(gè)企業(yè)中產(chǎn)值增長(zhǎng)率不低于40%的企業(yè)頻率為14+7100產(chǎn)值負(fù)增長(zhǎng)的企業(yè)頻率為2100用樣本頻率分布估計(jì)總體分布得這類(lèi)企業(yè)中產(chǎn)值增長(zhǎng)率不低于40%的企業(yè)比例為21%,產(chǎn)值負(fù)增長(zhǎng)的企業(yè)比例為2%.(2)y=1100×××××s2=1100∑i=15ni(y=1100[2×(-0.40)2+24×(-0.20)2+53×02+14×2+7×2s=0.0296×74≈0.17.所以,這類(lèi)企業(yè)產(chǎn)值增長(zhǎng)率的平均數(shù)與標(biāo)準(zhǔn)差的估計(jì)值分別為30%,17%.方法總結(jié)利用頻數(shù)分布表求平均數(shù)估計(jì)值的方法:各組區(qū)間中點(diǎn)值乘該組頻數(shù),并求和,再除以樣本容量.利用頻數(shù)分布表求標(biāo)準(zhǔn)差估計(jì)值的方法:用各組區(qū)間中點(diǎn)值代表該組,代入標(biāo)準(zhǔn)差公式即可.14.(2016四川理,16,12分)我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過(guò)x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.(1)求直方圖中a的值;(2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;(3)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)x(噸),估計(jì)x的值,并說(shuō)明理由.解析(1)由頻率分布直方圖知,月均用水量在[0,0.5)中的頻率為×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]中的頻率分別為0.08,0.20,0.26,0.06,0.04,0.02.由××a+0.06+0.04+0.02=1,解得a=0.30.(2)由(1),100位居民每人月均用水量不低于3噸的頻率為0.06+0.04+0.02=0.12.由以上樣本的頻率分布,可以估計(jì)全市30萬(wàn)居民中月均用水量不低于3噸的人數(shù)為300000×0.12=36000.(3)因?yàn)榍?組的頻率之和為0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,而前5組的頻率之和為0.04+0.08+0.15+0.20+0.26=0.73<0.85,所以≤x<3.由×(x-2.5)=0.85-0.73,解得x=2.9.所以,估計(jì)月用水量標(biāo)準(zhǔn)為噸時(shí),85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn).思路分析由圖易知組距為0.5,再由頻率之和等于1即可求出a;由圖可知前6組的頻率之和為0.88>0.85,前5組的頻率之和為0.73<0.85,說(shuō)明x∈[2.5,3),再由×即可求出x.評(píng)析本題中求a值的關(guān)鍵是抓住頻率之和為1,確定x在哪個(gè)區(qū)間內(nèi)是解題的關(guān)鍵.15.(2016北京文,17,13分)某市居民用水?dāng)M實(shí)行階梯水價(jià).每人月用水量中不超過(guò)w立方米的部分按4元/立方米收費(fèi),超出w立方米的部分按10元/立方米收費(fèi).從該市隨機(jī)調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:(1)如果w為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價(jià)格為4元/立方米,w至少定為多少?(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替.當(dāng)w=3時(shí),估計(jì)該市居民該月的人均水費(fèi).解析(1)由用水量的頻率分布直方圖知,該市居民該月用水量在區(qū)間[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]內(nèi)的頻率依次為0.1,0.15,0.2,0.25,0.15.(3分)所以該月用水量不超過(guò)3立方米的居民占85%,用水量不超過(guò)2立方米的居民占45%.(5分)依題意,w至少定為3.(6分)(2)由用水量的頻率分布直方圖及題意,得居民該月用水費(fèi)用的數(shù)據(jù)分組與頻率分布表:組號(hào)12345678分組[2,4](4,6](6,8](8,10](10,12](12,17](17,22](22,27]頻率(10分)根據(jù)題意,該市居民該月的人均水費(fèi)估計(jì)為:4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).(13分)思路分析第(1)問(wèn),需要計(jì)算該市居民月用水量在各區(qū)間上的頻率,根據(jù)樣本的頻率分布直方圖即可獲解.第(2)問(wèn),由月用水量的頻率分布直方圖和w=3可計(jì)算居民該月用水費(fèi)用的數(shù)據(jù)的分組與頻率分布表,由此可估計(jì)該市居民該月的人均水費(fèi).評(píng)析本題考查了頻率分布直方圖及用樣本估計(jì)總體,屬中檔題.16.(2015課標(biāo)Ⅱ理,18,12分)某公司為了解用戶對(duì)其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機(jī)調(diào)查了20個(gè)用戶,得到用戶對(duì)產(chǎn)品的滿意度評(píng)分如下:A地區(qū):6273819295857464537678869566977888827689B地區(qū):7383625191465373648293486581745654766579(1)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶滿意度評(píng)分的莖葉圖,并通過(guò)莖葉圖比較兩地區(qū)滿意度評(píng)分的平均值及分散程度(不要求計(jì)算出具體值,給出結(jié)論即可);A地區(qū)B地區(qū)456789(2)根據(jù)用戶滿意度評(píng)分,將用戶的滿意度從低到高分為三個(gè)等級(jí):滿意度評(píng)分低于70分70分到89分不低于90分滿意度等級(jí)不滿意滿意非常滿意記事件C:“A地區(qū)用戶的滿意度等級(jí)高于B地區(qū)用戶的滿意度等級(jí)”.假設(shè)兩地區(qū)用戶的評(píng)價(jià)結(jié)果相互獨(dú)立.根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率.解析(1)兩地區(qū)用戶滿意度評(píng)分的莖葉圖如下:A地區(qū)B地區(qū)4683513646426245568864373346992865183217552913通過(guò)莖葉圖可以看出,A地區(qū)用戶滿意度評(píng)分的平均值高于B地區(qū)用戶滿意度評(píng)分的平均值;A地區(qū)用戶滿意度評(píng)分比較集中,B地區(qū)用戶滿意度評(píng)分比較分散.(2)記CA1表示事件:“A地區(qū)用戶的滿意度等級(jí)為滿意或非常滿意”;CA2表示事件:“A地區(qū)用戶的滿意度等級(jí)為非常滿意”;CB1表示事件:“B地區(qū)用戶的滿意度等級(jí)為不滿意”;CB2表示事件:“B地區(qū)用戶的滿意度等級(jí)為滿意”,則CA1與CB1獨(dú)立,CA2與CB2獨(dú)立,CB1與CB2互斥,C=CB1CA1∪CB2CA2.P(C)=P(CB1CA1∪CB2CA2)=P(CB1CA1)+P(CB2CA2)=P(CB1)P(CA1)+P(CB2)P(CA2).由所給數(shù)據(jù)得CA1,CA2,CB1,CB2發(fā)生的頻率分別為1620,420,1020,820,故P(CA1)=1620,P(CA2)=420,P(CB1)=1020,P(CB2)=820,P(C)=17.(2015課標(biāo)Ⅱ文,18,12分)某公司為了解用戶對(duì)其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機(jī)調(diào)查了40個(gè)用戶,根據(jù)用戶對(duì)產(chǎn)品的滿意度評(píng)分,得到A地區(qū)用戶滿意度評(píng)分的頻率分布直方圖和B地區(qū)用戶滿意度評(píng)分的頻數(shù)分布表.B地區(qū)用戶滿意度評(píng)分的頻數(shù)分布表滿意度評(píng)分分組[50,60)[60,70)[70,80)[80,90)[90,100]頻數(shù)2814106(1)作出B地區(qū)用戶滿意度評(píng)分的頻率分布直方圖,并通過(guò)直方圖比較兩地區(qū)滿意度評(píng)分的平均值及分散程度(不要求計(jì)算出具體值,給出結(jié)論即可);(2)根據(jù)用戶滿意度評(píng)分,將用戶的滿意度分為三個(gè)等級(jí):滿意度評(píng)分低于70分70分到89分不低于90分滿意度等級(jí)不滿意滿意非常滿意估計(jì)哪個(gè)地區(qū)用戶的滿意度等級(jí)為不滿意的概率大,說(shuō)明理由.解析(1)通過(guò)兩地區(qū)用戶滿意度評(píng)分的頻率分布直方圖可以看出,B地區(qū)用戶滿意度評(píng)分的平均值高于A地區(qū)用戶滿意度評(píng)分的平均值;B地區(qū)用戶滿意度評(píng)分比較集中,而A地區(qū)用戶滿意度評(píng)分比較分散.(2)A地區(qū)用戶的滿意度等級(jí)為不滿意的概率大.記CA表示事件:“A地區(qū)用戶的滿意度等級(jí)為不滿意”;CB表示事件:“B地區(qū)用戶的滿意度等級(jí)為不滿意”.由直方圖得P(CA)的估計(jì)值為(0.01+0.02+0.03)×10=0.6,P(CB)的估計(jì)值為(0.005+0.02)×10=0.25.所以A地區(qū)用戶的滿意度等級(jí)為不滿意的概率大.18.(2015廣東文,17,12分)某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.(1)求直方圖中x的值;(2)求月平均用電量的眾數(shù)和中位數(shù);(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?解析(1)由已知得,20×(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)=1,解得x=0.0075.(2)由題圖可知,面積最大的矩形對(duì)應(yīng)的月平均用電量區(qū)間為[220,240),所以月平均用電量的眾數(shù)的估計(jì)值為230;因?yàn)?0×(0.002+0.0095+0.011)=0.45<0.5,20×(0.002+0.0095+0.011+0.0125)=0.7>0.5,所以中位數(shù)在區(qū)間[220,240)內(nèi).設(shè)中位數(shù)為m,則20××(m-220)=0.5,解得m=224.所以月平均用電量的中位數(shù)為224.(3)由題圖知,月平均用電量為[220,240)的用戶數(shù)為(240-220)××100=25,同理可得,月平均用電量為[240,260),[260,280),[280,300]的用戶數(shù)分別為15,10,5.故用分層抽樣的方式抽取11戶居民,月平均用電量在[220,240)的用戶中應(yīng)抽取11×2525+15+10+5=5(戶19.(2014課標(biāo)Ⅰ文,18,12分)從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻數(shù)分布表:質(zhì)量指標(biāo)值分組[75,85)[85,95)[95,105)[105,115)[115,125)頻數(shù)62638228(1)作出這些數(shù)據(jù)的頻率分布直方圖;(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定?解析(1)(2)質(zhì)量指標(biāo)值的樣本平均數(shù)為x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.質(zhì)量指標(biāo)值的樣本方差為s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)的估計(jì)值為100,方差的估計(jì)值為104.(3)質(zhì)量指標(biāo)值不低于95的產(chǎn)品所占比例的估計(jì)值為0.38+0.22+0.08=0.68.由于該估計(jì)值小于0.8,故不能認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定.評(píng)析本題考查繪制頻率分布直方圖,計(jì)算樣本的數(shù)字特征,及用樣本估計(jì)總體等知識(shí),同時(shí)考查統(tǒng)計(jì)的思想方法.20.(2014北京文,18,13分)從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:組號(hào)分組頻數(shù)1[0,2)62[2,4)83[4,6)174[6,8)225[8,10)256[10,12)127[12,14)68[14,16)29[16,18)2合計(jì)100(1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的概率;(2)求頻率分布直方圖中的a,b的值;(3)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中的100名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第幾組.(只需寫(xiě)出結(jié)論)解析(1)根據(jù)頻數(shù)分布表知,100名學(xué)生中一周課外閱讀時(shí)間不少于12小時(shí)的學(xué)生共有6+2+2=10名,所以樣本中的學(xué)生一周課外閱讀時(shí)間少于12小時(shí)的頻率是1-10100故從該校隨機(jī)選取一名學(xué)生,估計(jì)其該周課外閱讀時(shí)間少于12小時(shí)的概率為0.9.(2)課外閱讀時(shí)間落在組[4,6)內(nèi)的有17人,頻率為0.17,所以a=頻率組距=0.17課外閱讀時(shí)間落在組[8,10)內(nèi)的有25人,頻率為0.25,所以b=頻率組距=0.25(3)樣本中的100名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第4組.21.(2013課標(biāo)Ⅱ文,19,12分)經(jīng)銷(xiāo)商經(jīng)銷(xiāo)某種農(nóng)產(chǎn)品,在一個(gè)銷(xiāo)售季度內(nèi),每售出1t該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷(xiāo)售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示.經(jīng)銷(xiāo)商為下一個(gè)銷(xiāo)售季度購(gòu)進(jìn)了130t該農(nóng)產(chǎn)品,以X(單位:t,100≤X≤150)表示下一個(gè)銷(xiāo)售季度內(nèi)的市場(chǎng)需求量,T(單位:元)表示下一個(gè)銷(xiāo)售季度內(nèi)經(jīng)銷(xiāo)該農(nóng)產(chǎn)品的利潤(rùn).(1)將T表示為X的函數(shù);(2)根據(jù)直方圖估計(jì)利潤(rùn)T不少于57000元的概率.解析(1)當(dāng)X∈[100,130)時(shí),T=500X-300(130-X)=800X-39000.當(dāng)X∈[130,150]時(shí),T=500×130=65000.所以T=800(2)由(1)知利潤(rùn)T不少于57000元當(dāng)且僅當(dāng)120≤X≤150.由直方圖知需求量X∈[120,150]的頻率為0.7,所以下一個(gè)銷(xiāo)售季度內(nèi)的利潤(rùn)T不少于57000元的概率的估計(jì)值為0.7.22.(2013安徽文,17,12分)為調(diào)查甲、乙兩校高三年級(jí)學(xué)生某次聯(lián)考數(shù)學(xué)成績(jī)情況,用簡(jiǎn)單隨機(jī)抽樣,從這兩校中各抽取30名高三年級(jí)學(xué)生,以他們的數(shù)學(xué)成績(jī)(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如下:(1)若甲校高三年級(jí)每位學(xué)生被抽取的概率為0.05,求甲校高三年級(jí)學(xué)生總?cè)藬?shù),并估計(jì)甲校高三年級(jí)這次聯(lián)考數(shù)學(xué)成績(jī)的及格率(60分及60分以上為及格);(2)設(shè)甲、乙兩校高三年級(jí)學(xué)生這次聯(lián)考數(shù)學(xué)平均成績(jī)分別為x1、x2,估計(jì)x1-解析(1)設(shè)甲校高三年級(jí)學(xué)生總?cè)藬?shù)為n.由題意知,30n=0.05,即樣本中甲校高三年級(jí)學(xué)生數(shù)學(xué)成績(jī)不及格人數(shù)為5,據(jù)此估計(jì)甲校高三年級(jí)此次聯(lián)考數(shù)學(xué)成績(jī)及格率為1-530=5(2)設(shè)甲、乙兩校樣本平均數(shù)分別為x'1、x'2,根據(jù)樣本莖葉圖可知,30(x'1-x'2)=30x'1-30x'2=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15.因此x'1-x'2=0.5.故x1-x2的估計(jì)值為評(píng)析本題考查隨機(jī)抽樣與莖葉圖等統(tǒng)計(jì)學(xué)的基本知識(shí),考查學(xué)生用樣本估計(jì)總體的思想以及數(shù)據(jù)分析處理能力.23.(2017課標(biāo)Ⅰ文,19,12分)為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,檢驗(yàn)員每隔30min從該生產(chǎn)線上隨機(jī)抽取一個(gè)零件,并測(cè)量其尺寸(單位:cm).下面是檢驗(yàn)員在一天內(nèi)依次抽取的16個(gè)零件的尺寸:抽取次序12345678零件尺寸抽取次序910111213141516零件尺寸經(jīng)計(jì)算得x=116∑i=1=116(∑≈18.439,∑i=116(xi-x)(i-8.5)=-2.78,其中xi為抽取的第i個(gè)零件的尺寸(1)求(xi,i)(i=1,2,…,16)的相關(guān)系數(shù)r,并回答是否可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過(guò)程的進(jìn)行而系統(tǒng)地變大或變小(若|r|<0.25,則可以認(rèn)為零件的尺寸不隨生產(chǎn)過(guò)程的進(jìn)行而系統(tǒng)地變大或變小);(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(x-3s,x+3s)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查.(i)從這一天抽檢的結(jié)果看,是否需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查?(ii)在(x-3s,x+3s)之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計(jì)這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值與標(biāo)準(zhǔn)差.(精確到0.01)附:樣本(xi,yi)(i=1,2,…,n)的相關(guān)系數(shù)r=∑i0.008≈0.09.解析本題考查統(tǒng)計(jì)問(wèn)題中的相關(guān)系數(shù)及樣本數(shù)據(jù)的均值與方差.(1)由樣本數(shù)據(jù)得(xi,i)(i=1,2,…,16)的相關(guān)系數(shù)為r=∑=-2.780.212由于|r|<0.25,因此可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過(guò)程的進(jìn)行而系統(tǒng)地變大或變小.(2)(i)由于x=9.97,s≈0.212,由樣本數(shù)據(jù)可以看出抽取的第13個(gè)零件的尺寸在(x-3s,x+3s)以外,因此需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查.(ii)剔除離群值,即第13個(gè)數(shù)據(jù),剩下數(shù)據(jù)的平均數(shù)為115×(16×這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值的估計(jì)值為10.02.∑i=116xi2=16×剔除第13個(gè)數(shù)據(jù),剩下數(shù)據(jù)的樣本方差為115×2-15×2)≈這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的標(biāo)準(zhǔn)差的估計(jì)值為0.008≈0.09.方法總結(jié)樣本的數(shù)字特征.(1)樣本數(shù)據(jù)的相關(guān)系數(shù)r,r=∑反映樣本數(shù)據(jù)的相關(guān)程度,|r|越大,則相關(guān)性越強(qiáng).(2)樣本數(shù)據(jù)的均值反映樣本數(shù)據(jù)的平均水平;樣本數(shù)據(jù)的方差反映樣本數(shù)據(jù)的穩(wěn)定性,方差越小,數(shù)據(jù)越穩(wěn)定;樣本數(shù)據(jù)的標(biāo)準(zhǔn)差為方差的算術(shù)平方根.24.(2017課標(biāo)Ⅲ文,18,12分)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.(1)估計(jì)六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;(2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫(xiě)出Y的所有可能值,并估計(jì)Y大于零的概率.解析本題考查概率的計(jì)算.(1)這種酸奶一天的需求量不超過(guò)300瓶,當(dāng)且僅當(dāng)最高氣溫低于25,由表格數(shù)據(jù)知,最高氣溫低于25的頻率為2+16+3690=0.6,所以這種酸奶一天的需求量不超過(guò)300瓶的概率的估計(jì)值為(2)當(dāng)這種酸奶一天的進(jìn)貨量為450瓶時(shí),若最高氣溫不低于25,則Y=6×450-4×450=900;若最高氣溫位于區(qū)間[20,25),則Y=6×300+2×(450-300)-4×450=300;若最高氣溫低于20,則Y=6×200+2×(450-200)-4×450=-100.所以,Y的所有可能值為900,300,-100.Y大于零當(dāng)且僅當(dāng)最高氣溫不低于20,由表格數(shù)據(jù)知,最高氣溫不低于20的頻率為36+25+7+490=0.8,因此Y大于零的概率的估計(jì)值為25.(2016課標(biāo)Ⅰ文,19,12分)某公司計(jì)劃購(gòu)買(mǎi)1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買(mǎi)這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買(mǎi),則每個(gè)500元.現(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買(mǎi)幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:記x表示1臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺(tái)機(jī)器在購(gòu)買(mǎi)易損零件上所需的費(fèi)用(單位:元),n表示購(gòu)機(jī)的同時(shí)購(gòu)買(mǎi)的易損零件數(shù).(1)若n=19,求y與x的函數(shù)解析式;(2)若要求“需更換的易損零件數(shù)不大于n”的頻率不小于0.5,求n的最小值;(3)假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買(mǎi)19個(gè)易損零件,或每臺(tái)都購(gòu)買(mǎi)20個(gè)易損零件,分別計(jì)算這100臺(tái)機(jī)器在購(gòu)買(mǎi)易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購(gòu)買(mǎi)1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買(mǎi)19個(gè)還是20個(gè)易損零件?解析(1)當(dāng)x≤19時(shí),y=3800;當(dāng)x>19時(shí),y=3800+500(x-19)=500x-5700,所以y與x的函數(shù)解析式為y=3800,x≤19,500x(2)由柱狀圖知,需更換的零件數(shù)不大于18的頻率為0.46,不大于19的頻率為0.7,故n的最小值為19.(5分)(3)若每臺(tái)機(jī)器在購(gòu)機(jī)同時(shí)都購(gòu)買(mǎi)19個(gè)易損零件,則這100臺(tái)機(jī)器中有70臺(tái)在購(gòu)買(mǎi)易損零件上的費(fèi)用為3800元,20臺(tái)的費(fèi)用為4300元,10臺(tái)的費(fèi)用為4800元,因此這100臺(tái)機(jī)器在購(gòu)買(mǎi)易損零件上所需費(fèi)用的平均數(shù)為1100(3800×70+4300×20+4800×10)=4000(元).(7分若每臺(tái)機(jī)器在購(gòu)機(jī)同時(shí)都購(gòu)買(mǎi)20個(gè)易損零件,則這100臺(tái)機(jī)器中有90臺(tái)在購(gòu)買(mǎi)易損零件上的費(fèi)用為4000元,10臺(tái)的費(fèi)用為4500元,因此這100臺(tái)機(jī)器在購(gòu)買(mǎi)易損零件上所需費(fèi)用的平均數(shù)為1100(4000×90+4500×10)=4050(元).(10分比較兩個(gè)平均數(shù)可知,購(gòu)買(mǎi)1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買(mǎi)19個(gè)易損零件.(12分)思路分析先寫(xiě)出y與x的函數(shù)關(guān)系式(分段函數(shù)),然后分別求所需費(fèi)用的平均數(shù),通過(guò)比較兩個(gè)平均數(shù)的大小可得所求結(jié)果.評(píng)析本題以條形圖為載體,考查了函數(shù)的綜合應(yīng)用,對(duì)考生用圖、識(shí)圖的能力進(jìn)行了考查,同時(shí)體現(xiàn)了數(shù)學(xué)源于生活又服務(wù)于生活的特點(diǎn).26.(2016課標(biāo)Ⅱ文,18,12分)某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買(mǎi)該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:上年度出險(xiǎn)次數(shù)01234≥5保費(fèi)a2a隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:出險(xiǎn)次數(shù)01234≥5頻數(shù)605030302010(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”.求P(A)的估計(jì)值;(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”.求P(B)的估計(jì)值;(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.解析(1)事件A發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)小于2.由所給數(shù)據(jù)知,一年內(nèi)出險(xiǎn)次數(shù)小于2的頻率為60+50200故P(A)的估計(jì)值為0.55.(3分)(2)事件B發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)大于1且小于4.由所給數(shù)據(jù)知,一年內(nèi)出險(xiǎn)次數(shù)大于1且小于4的頻率為30+30200故P(B)的估計(jì)值為0.3.(6分)(3)由所給數(shù)據(jù)得保費(fèi)a2a頻率(10分)調(diào)查的200名續(xù)保人的平均保費(fèi)為×0.30+a××××0.10+2a×0.05=1.1925a.因此,續(xù)保人本年度平均保費(fèi)的估計(jì)值

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論