小學數(shù)學復習資料整理_第1頁
小學數(shù)學復習資料整理_第2頁
小學數(shù)學復習資料整理_第3頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

小學數(shù)學復習資料整理一、制定切實可行的復習方案,并仔細執(zhí)行方案。為使復習具有針對性,目的性和可行性,找準重點、難點,大綱(課程標準)是復習依據(jù),教材是復習的藍本。復習時要弄清學習中的難點、疑點及各學問點易出錯的緣由,這樣做到復習有針對性,可收到事半功倍的效果。

二、分類整理、梳理,強化復習的系統(tǒng)性。復習的重要特點就是在系統(tǒng)原理的指導下,對所學學問進行系統(tǒng)的整理,使之形成一個較完整的學問體體系,這樣有利于學問的系統(tǒng)化和對其內(nèi)在聯(lián)系的把握,便于融合貫穿。做到梳理——訓練——拓展,有序進展,真正提高復習的效果。

三、辨析比較,區(qū)分弄清易混概念。對于易混淆的概念,首先抓住意義方面的比較,再者是對易混概念的分析,這樣能全面把握概念的本質(zhì),避開不同概念的干擾,另外對易混的方法也應進行比較,以明確解題方法。

四、一題多解,多題一解,提高解題的敏捷性。有些題目,可以從不同的角度去分析,得到不同的解題方法。一題多解可以培育分析問題的力量。敏捷解題的力量。不同的解題思路,列式不同,結(jié)果相同,收到殊途同歸的效果。同時也給其他同學以啟迪,開闊解題思路。有些應用題,雖題目形式不同,但它們的解題方法是一樣的,故在復習時,要從不同的角度去思索,要對各類習題進行歸類,這樣才能使所所學學問融會貫穿,提高解題敏捷性。

學校數(shù)學學問要點匯總

1、鐘面上有3根針,它們是時針、分針、秒針,其中走得最快的是秒針,走得最慢的是時針。時針最短,秒針最長。

2、鐘面上有12個數(shù)字,12個大格,60個小格;每兩個數(shù)之間是1個大格,也就是5個小格。

3、時針走1大格是1小時;分針走1大格是5分鐘,走1小格是1分鐘;秒針走1大格是5秒鐘,走1小格是1秒鐘。

4、分針走1小格,秒針正好走1圈,秒針走1圈是60秒,也就是1分鐘。

5、時針從一個數(shù)走到下一個數(shù)是1小時。分針從一個數(shù)走到下一個數(shù)是5分鐘。秒針從一個數(shù)走到下一個數(shù)是5秒鐘。

6、公式(每兩個相鄰的時間單位之間的.進率是60):

1時=60分

1分=60秒

7、常用的時間單位:時、分、秒、年、月、日、世紀等。

1世紀=100年

1年=12個月

【分數(shù)的初步熟悉】

1、幾分之一:把一個物體或一個圖形平均分成幾份,每一份就是它的幾分之一。

幾分之幾:把一個物體或一個圖形平均分成幾份,取其中的幾份,就是這個物體或圖形的幾分之幾。

2、把一個整體平均分得的份數(shù)越多,它的每一份所表示的數(shù)就越小。

3、比較大小的方法:

①分子相同,分母小的分數(shù)反而大,分母大的分數(shù)反而小。

②分母相同,分子大的分數(shù)就大,分子小的分數(shù)就小。

4、分數(shù)加減法:

①同分母的分數(shù)加、減法的計算方法:同分母分數(shù)相加減,分母不變,分子相加、減。

②計算1減幾分之幾時,先把1寫成與減數(shù)分母相同的分數(shù),再計算。

5、分數(shù)的意義:把一個整體平均分成若干份,表示幾份就是這個整體的幾分之幾,所分的份數(shù)作分母,所取的份數(shù)作分子。

6、求一個數(shù)是另一個數(shù)的幾分之幾是多少的計算方法:先用這個數(shù)除以分母(求出1份的數(shù)量是多少),再用商乘分子(求出其中幾份是多少)。

人教版學校六班級上冊數(shù)學學問點復習

(一)分數(shù)乘法意義:

1、分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。

“分數(shù)乘整數(shù)”指的是其次個因數(shù)必需是整數(shù),不能是分數(shù)。

2、一個數(shù)乘分數(shù)的意義就是求一個數(shù)的幾分之幾是多少。

“一個數(shù)乘分數(shù)”指的是其次個因數(shù)必需是分數(shù),不能是整數(shù)。(第一個因數(shù)是什么都可以)

(二)分數(shù)乘法計算法則:

1、分數(shù)乘整數(shù)的運算法則是:分子與整數(shù)相乘,分母不變。

(1)為了計算簡便能約分的可先約分再計算。(整數(shù)和分母約分)(2)約分是用整數(shù)和下面的分母約掉公因數(shù)。(整數(shù)千萬不能與分母相乘,計算結(jié)果必需是最簡分數(shù))。

2、分數(shù)乘分數(shù)的運算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)

(1)假如分數(shù)乘法算式中含有帶分數(shù),要先把帶分數(shù)化成假分數(shù)再計算。

(2)分數(shù)化簡的方法是:分子、分母同時除以它們的公因數(shù)。

(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數(shù)先劃去,再分別在它們的上、下方寫出約分后的數(shù)。(約分后分子和分母必需不再含有公因數(shù),這樣計算后的結(jié)果才是最簡潔分數(shù))。

(4)分數(shù)的基本性質(zhì):分子、分母同時乘或者除以一個相同的數(shù)(0除外),分數(shù)的大小不變。

(三)積與因數(shù)的關(guān)系:

一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。a×b=c,當b>1時,c>a。

一個數(shù)(0除外)乘小于1的數(shù),積小于這個數(shù)。a×b=c,當b<1時,c

一個數(shù)(0除外)乘等于1的數(shù),積等于這個數(shù)。a×b=c,當b=1時,c=a。

在進行因數(shù)與積的大小比較時,要留意因數(shù)為0時的特別狀況。

(四)分數(shù)乘法混合運算

1、分數(shù)乘法混合運算挨次與整數(shù)相同,先乘、除后加、減,有括號的先算括號里面的,再算括號外面的。

2、整數(shù)乘法運算定律對分數(shù)乘法同樣適用;運算定律可以使一些計算簡便。

乘法交換律:a×b=b×a乘法結(jié)合律:(a×b)×c=a×(b×c)

乘法安排律:a×(b±c)=a×b±a×c

(五)倒數(shù)的意義:乘積為1的兩個數(shù)互為倒數(shù)。

1、倒數(shù)是兩個數(shù)的關(guān)系,它們相互依存,不能單獨存在。單獨一個數(shù)不能稱為倒數(shù)。(必需說清誰是誰的倒數(shù))

2、推斷兩個數(shù)是否互為倒數(shù)的標準是:兩數(shù)相乘的積是否為“1”。例如:a×b=1則a、b互為倒數(shù)。

3、求倒數(shù)的方法:

①求分數(shù)的倒數(shù):交換分子、分母的位置。

②求整數(shù)的倒數(shù):整數(shù)分之1。

③求帶分數(shù)的倒數(shù):先化成假分數(shù),再求倒數(shù)。

④求小數(shù)的倒數(shù):先化成分數(shù)再求倒數(shù)。

4、1的倒數(shù)是它本身,由于1×1=1

0沒有倒數(shù),由于任何數(shù)乘0積都是0,且0不能作分母。

5、真分數(shù)的倒數(shù)是假分數(shù),真分數(shù)的倒數(shù)大于1,也大于它本身。

假分數(shù)的倒數(shù)小于或等于1。帶分數(shù)的倒數(shù)小于1。

(六)分數(shù)乘法應用題——用分數(shù)乘法解決問題

1、求一個數(shù)的幾分之幾是多少?(用乘法)

已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分數(shù)相乘。

2、巧找單位“1”的量:在含有分數(shù)(分率)的語句中,分率前面的量就是單位“1”對應的量,或者“占”“是”“比”字后面的量是單位“1”

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論