高中數(shù)學(xué)-任意角的三角函數(shù)教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思_第1頁
高中數(shù)學(xué)-任意角的三角函數(shù)教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思_第2頁
高中數(shù)學(xué)-任意角的三角函數(shù)教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思_第3頁
高中數(shù)學(xué)-任意角的三角函數(shù)教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思_第4頁
高中數(shù)學(xué)-任意角的三角函數(shù)教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

——————————————第1頁(共5頁)——————————————第一課時(shí)任意角的三角函數(shù)知識與技能:1.掌握任意角的三角函數(shù)的定義;2.已知角α終邊上一點(diǎn),會求角α的各三角函數(shù)值;3.記住三角函數(shù)的定義域、值域。過程與方法:1理解并掌握任意角的三角函數(shù)的定義;2樹立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù);3通過對定義域,三角函數(shù)值的符號,誘導(dǎo)公式一的推導(dǎo),提高學(xué)生分析、探究、解決問題的能力。情感態(tài)度與價(jià)值觀:1使學(xué)生認(rèn)識到事物之間是有聯(lián)系的,三角函數(shù)就是角度(自變量)與比值(函數(shù)值)的一種聯(lián)系方式2學(xué)習(xí)轉(zhuǎn)化的思想,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神;教學(xué)重點(diǎn):三角函數(shù)的定義;三角函數(shù)的定義域及其確定方法;三角函數(shù)值在各個(gè)象限內(nèi)的符號。教學(xué)難點(diǎn):任意角三角函數(shù)的定義.一.復(fù)習(xí)引入思考:我們已經(jīng)學(xué)過銳角三角函數(shù),知道它們都是以銳角為自變量,以比值為函數(shù)值的函數(shù),你能用直角坐標(biāo)系中角的終邊上點(diǎn)的坐標(biāo)來表示銳角三角函數(shù)嗎?結(jié)論:在Rt△ABC中,設(shè)A對邊為a,B對邊為b,C對邊為c,銳角A的正弦,余弦,正切依次為:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù)思考1:角推廣后,這樣的三角函數(shù)的定義不再適用,我們必須對三角函數(shù)重新定義.你能用直角坐標(biāo)系中角的終邊上點(diǎn)的坐標(biāo)來表示銳角三角函數(shù)嗎?如圖,設(shè)銳角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,那么它的終邊在第一象限.在的終邊上任取一點(diǎn),它與原點(diǎn)的距離.過作軸的垂線,垂足為,則線段的長度為,線段的長度為.則;;.思考2:對于確定的角,這三個(gè)比值是否會隨點(diǎn)在的終邊上的位置的改變而改變呢?為什么?根據(jù)相似三角形的知識,對于確定的角,三個(gè)比值不以點(diǎn)P在的終邊上的位置的改變而改變大小.我們可以將點(diǎn)P取在使線段的長的特殊位置上,這樣就可以得到用直角坐標(biāo)系內(nèi)的點(diǎn)的坐標(biāo)表示銳角三角函數(shù):;;.單位圓:在直角坐標(biāo)系中,我們稱以原點(diǎn)為圓心,以單位長度為半徑的圓稱為單位圓.上述P點(diǎn)就是的終邊與單位圓的交點(diǎn),銳角的三角函數(shù)可以用單位圓上點(diǎn)的坐標(biāo)表示.二新課講授1.任意角的三角函數(shù)的定義結(jié)合上述銳角的三角函數(shù)值的求法,我們應(yīng)如何求解任意角的三角函數(shù)值呢?顯然,我們可以利用單位圓來定義任意角的三角函數(shù).如圖,設(shè)是一個(gè)任意角,它的終邊與單位圓交于點(diǎn),那么:(1)叫做的正弦(sine),記做,即;(2)叫做的余弦(cossine),記做,即;(3)叫做的正切(tangent),記做,即.思考3:在上述三角函數(shù)定義中,自變量是什么?對應(yīng)關(guān)系有什么特點(diǎn),函數(shù)值是什么?說明:(1)當(dāng)時(shí),的終邊在軸上,終邊上任意一點(diǎn)的橫坐標(biāo)都等于,所以無意義,除此情況外,對于確定的值,上述三各值都是唯一確定的實(shí)數(shù).(2)當(dāng)是銳角時(shí),此定義與初中定義相同;當(dāng)不是銳角時(shí),也能夠找出三角函數(shù),因?yàn)椋热挥薪?,就必然有終邊,終邊就必然與單位圓有交點(diǎn),從而就必然能夠最終算出三角函數(shù)值.(3)正弦,余弦,正切都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),我們將這種函數(shù)統(tǒng)稱為三角函數(shù).2.利用定義求角的三角函數(shù)值例1.求的正弦,余弦和正切值.解:在直角坐標(biāo)系中,作,的終邊與單位圓的交點(diǎn)坐標(biāo)為,所以思考:如果將變?yōu)槟??定義推廣:設(shè)角是一個(gè)任意角,是終邊上的任意一點(diǎn),點(diǎn)與原點(diǎn)的距離,.則叫的正弦,記作叫的余弦,記作叫的余弦記作練習(xí):1已知角的終邊過點(diǎn),求的三個(gè)三角函數(shù)值.3.三角函數(shù)的定義域和函數(shù)值符號探究:請根據(jù)上述任意角的三角函數(shù)定義,先將正弦,余弦和正切函數(shù)在弧度制下的定義域填入下表,再將這三種函數(shù)的值再各象限的符號填入下表函數(shù)定義域三.歸納小結(jié):任意角的三角函數(shù)的定義三角函數(shù)的定義域及三角函數(shù)值的符號四.布置作業(yè)課本習(xí)題1.2A組第3,7,9題五課后反思六板書設(shè)計(jì)1.2.任意角的三角函數(shù)一復(fù)習(xí)引入二新課講授任意角的三角函數(shù)的定義(在單位圓中)(2)任意角三角函數(shù)的定義(角終邊上任意一點(diǎn)坐標(biāo))2三角函數(shù)的定義域3.三角函數(shù)值的符號例1.求的正弦,余弦和正切值學(xué)情分析本節(jié)以銳角三角函數(shù)為引子,利用單位圓上點(diǎn)的坐標(biāo)定義三角函數(shù).由于三角函數(shù)與單位圓之間的這種緊密的內(nèi)部聯(lián)系,使得我們在討論三角函數(shù)時(shí),對于研究哪些問題以及用什么方法研究這些問題等,都可以從圓的性質(zhì)中得到啟發(fā).學(xué)生首次接觸單位圓,可能會感到不適,在教學(xué)中,要讓學(xué)生體會到用單位圓上的點(diǎn)的坐標(biāo)表示銳角三角函數(shù),不僅簡單、方便,而且反映本質(zhì)。讓學(xué)生體會數(shù)形結(jié)合的方便之處,所在在定義任意角的三角函數(shù)之前,應(yīng)做好鋪墊。三角函數(shù)的研究中,數(shù)形結(jié)合思想起著非常重要的作用.學(xué)情分析本節(jié)以銳角三角函數(shù)為引子,利用單位圓上點(diǎn)的坐標(biāo)定義三角函數(shù).由于三角函數(shù)與單位圓之間的這種緊密的內(nèi)部聯(lián)系,使得我們在討論三角函數(shù)時(shí),對于研究哪些問題以及用什么方法研究這些問題等,都可以從圓的性質(zhì)中得到啟發(fā).學(xué)生首次接觸單位圓,可能會感到不適,在教學(xué)中,要讓學(xué)生體會到用單位圓上的點(diǎn)的坐標(biāo)表示銳角三角函數(shù),不僅簡單、方便,而且反映本質(zhì)。讓學(xué)生體會數(shù)形結(jié)合的方便之處,所在在定義任意角的三角函數(shù)之前,應(yīng)做好鋪墊。三角函數(shù)的研究中,數(shù)形結(jié)合思想起著非常重要的作用.教材分析學(xué)生已經(jīng)學(xué)過銳角三角函數(shù),它是用直角三角形邊長的比來刻畫的.銳角三角函數(shù)的引入與“解三角形”有直接關(guān)系.任意角的三角函數(shù)是刻畫周期變化現(xiàn)象的數(shù)學(xué)模型,它與“解三角形”已經(jīng)沒有什么關(guān)系了.因此,與學(xué)習(xí)其他基本初等函數(shù)一樣,學(xué)習(xí)任意角的三角函數(shù),關(guān)鍵是要使學(xué)生理解三角函數(shù)的概念、圖象和性質(zhì),并能用三角函數(shù)描述一些簡單的周期變化規(guī)律,解決簡單的實(shí)際問題。本節(jié)以銳角三角函數(shù)為引子,利用單位圓上點(diǎn)的坐標(biāo)定義三角函數(shù).由于三角函數(shù)與單位圓之間的這種緊密的內(nèi)部聯(lián)系,使得我們在討論三角函數(shù)的總是時(shí),對于研究哪些問題以及用什么方法研究這些問題等,都可以從圓的性質(zhì)中得到啟發(fā).三角函數(shù)的研究中,數(shù)形結(jié)合思想起著非常重要的作用.評測練習(xí)1.填表:角α0°30°45°60°90°180°270°360°角α的弧度數(shù)sinαcosαtanα2.已知角α的終邊經(jīng)過點(diǎn)P(-3,-4),求角α的正弦、余弦和正切值.3.設(shè)α是三角形的一個(gè)內(nèi)角,在sinα,cosα,tanα,tan中,有可能取、負(fù)值的是.課后反思任意角三角函數(shù)與銳角三角函數(shù)的關(guān)系是“上下位”關(guān)系,即任意角三角函數(shù)的概念是抽象度更高、包攝范圍更廣的概念。因此,學(xué)生學(xué)習(xí)這個(gè)概念是以順應(yīng)為主的認(rèn)知過程,要建立銳角三角函數(shù)的一個(gè)等價(jià)的表示過程,即放在直角坐標(biāo)系下,用終邊上點(diǎn)的坐標(biāo)來表示,進(jìn)一步用終邊與單位圓的交點(diǎn)的坐標(biāo)表示。得到了銳角三角函數(shù)可以利用單位圓上的點(diǎn)的坐標(biāo)表示,進(jìn)而推廣到任意角三角函數(shù)的定義。有三角形相似可以知道改變角終邊上的點(diǎn)的位置角的三角函數(shù)值不會改變得到了定義的推廣,并且告訴學(xué)生推廣定義的廣泛應(yīng)用。高一學(xué)生思維活躍,有一定的邏輯推理能力,但在數(shù)學(xué)的研究方法和研究工具上尚且存在較大的知識空缺。在本節(jié)課中,學(xué)生通過初高中不同的三角函數(shù)的定義法的對比,體會用單位圓來刻畫任意角的三角函數(shù)時(shí)諸多妙處,培養(yǎng)研究三角問題的能力。學(xué)生利用任意角的三角函數(shù)的定義方法,分組探究正弦,余弦,正切函數(shù)的函數(shù)在各個(gè)象限的符號,再次體會單位圓作為本章研

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論