![高一數(shù)學(xué)人教A版《函數(shù)的概念》_第1頁(yè)](http://file4.renrendoc.com/view/e644dd4622ca2f7e30d89b1cb0e711ba/e644dd4622ca2f7e30d89b1cb0e711ba1.gif)
![高一數(shù)學(xué)人教A版《函數(shù)的概念》_第2頁(yè)](http://file4.renrendoc.com/view/e644dd4622ca2f7e30d89b1cb0e711ba/e644dd4622ca2f7e30d89b1cb0e711ba2.gif)
![高一數(shù)學(xué)人教A版《函數(shù)的概念》_第3頁(yè)](http://file4.renrendoc.com/view/e644dd4622ca2f7e30d89b1cb0e711ba/e644dd4622ca2f7e30d89b1cb0e711ba3.gif)
![高一數(shù)學(xué)人教A版《函數(shù)的概念》_第4頁(yè)](http://file4.renrendoc.com/view/e644dd4622ca2f7e30d89b1cb0e711ba/e644dd4622ca2f7e30d89b1cb0e711ba4.gif)
![高一數(shù)學(xué)人教A版《函數(shù)的概念》_第5頁(yè)](http://file4.renrendoc.com/view/e644dd4622ca2f7e30d89b1cb0e711ba/e644dd4622ca2f7e30d89b1cb0e711ba5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1.2.1函數(shù)的概念初中函數(shù)的概念:在某變化過程中,有兩個(gè)變量x、y,如果給定一個(gè)x,相應(yīng)地有唯一的一個(gè)y值與之對(duì)應(yīng)。那么就稱y是x的函數(shù),其中x是自變量,y是因變量。初中學(xué)過的函數(shù)都有哪些?y=kx(k不為0),y=kx+b(k不為0),y=k/x(k不為0),二次函數(shù)引例一一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo)。炮彈的射高為845m,且炮彈距地面的高度h(單位:m)隨時(shí)間(單位:s)變化的規(guī)律是
h=130t-5t2思考以下問題:(1)炮彈飛行1秒、5秒、10秒、20秒時(shí)距地面多高?(2)炮彈何時(shí)距離地面最高?(3)你能指出變量t和h的取值范圍嗎?分別用集合A和集合B表示出來。(4)對(duì)于集合A中的任意一個(gè)時(shí)間t,按照對(duì)應(yīng)關(guān)系,在B中是否都有唯一確定的高度h和它對(duì)應(yīng)?引例二:近幾年來,大氣層中的臭氧迅速減少,因而出現(xiàn)了臭氧層空洞問題.下圖中的曲線顯示了南極上空臭氧層空洞的面積從1979~2001年的變化情況思考:(1)能從圖中看出哪一年臭氧層空洞的面積最大?(2)哪些年的臭氧層空洞的面積大約為1500萬平方千米?(3)變量t的取值范圍是多少?引例三“八五”計(jì)劃以來我國(guó)城鎮(zhèn)居民恩格爾系數(shù)變化情況請(qǐng)問:(1)恩格爾系數(shù)與時(shí)間之間的關(guān)系是否和前兩個(gè)事例中的兩個(gè)變量之間的關(guān)系相似?(2)如何用集合與對(duì)應(yīng)的語言來描述這個(gè)關(guān)系?時(shí)間(年)19911992199319941995199619971998199920002001恩格爾系數(shù)(%)53.852.950.149.949.948.646.444.541.939.237.9以上三個(gè)實(shí)例有那些公共的特點(diǎn)?思考它們的關(guān)系可以描述為:對(duì)于數(shù)集A中的每一個(gè)x,按照某種對(duì)應(yīng)關(guān)系f,在數(shù)集B中都有唯一確定的y和它對(duì)應(yīng),記作:f:AB所以得到函數(shù)的概念:設(shè)A和B是非空的數(shù)集,如果按照某種對(duì)應(yīng)關(guān)系f,使A的任何一個(gè)數(shù)x,在B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:AB為從集合A到集合B的一個(gè)函數(shù)。記作x叫做自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值對(duì)應(yīng)的y值叫做函數(shù)值函數(shù)值的集合{}叫做函數(shù)的值域例如:(1)一次函數(shù)y=ax+b(a≠0)定義域?yàn)镽值域?yàn)镽y=ax+b(a≠0)x(2)二次函數(shù)定義域?yàn)镽值域?yàn)锽
x對(duì)于反比例函數(shù)y=k/x(k不為0),你能寫出它的定義域,值域和對(duì)應(yīng)關(guān)系嗎?定義域:值域:對(duì)應(yīng)關(guān)系:例題分析例1已知函數(shù)(1)求函數(shù)的定義域(2)求的值(3)當(dāng)a>0時(shí),求的值解(1)有意義的實(shí)數(shù)x的集合是{x|x≥-3}
有意義的實(shí)數(shù)x的集合是{x|x≠-2}所以這個(gè)函數(shù)的定義域就是
(2)(3)因?yàn)閍>0,所以f(a),f(a-1)有意義課堂練習(xí):P19練習(xí)1、2函數(shù)的三要素函數(shù)定義域值域?qū)?yīng)關(guān)系*值域是由定義域和對(duì)應(yīng)關(guān)系決定的*如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,就稱這兩個(gè)函數(shù)相等例2下列函數(shù)哪個(gè)與函數(shù)y=x相等解(1),這個(gè)函數(shù)與y=x(x∈R)對(duì)應(yīng)一樣,定義域不同,所以和y=x(x∈R)不相等(2)這個(gè)函數(shù)和y=x(x∈R)對(duì)應(yīng)關(guān)系一樣,定義域相同x∈R,所以和y=x(x∈R)相等x,x≥0-x,x<0(3)這個(gè)函數(shù)和y=x(x∈R)定義域相同x∈R,但是當(dāng)x<0時(shí),它的對(duì)應(yīng)關(guān)系為y=-x所以和y=x(x∈R)不相等(4)的定義域是{x|x≠0},與函數(shù)y=x(x∈R)的對(duì)應(yīng)關(guān)系一樣,但是定義域不同,所以和y=x(x∈R)不相等課堂練習(xí):P19練習(xí)3區(qū)間的概念⒈滿足不等式a≤x≤b的實(shí)數(shù)x的集合叫做閉區(qū)間,表示為[a,b]設(shè)a,b是兩個(gè)實(shí)數(shù),而且a<b,我們規(guī)定:⒉滿足不等式a<x<b的實(shí)數(shù)x的集合叫做開區(qū)間,表示為(a,b)⒊滿足不等式a≤x<b或a<x≤b的實(shí)數(shù)x的集合叫做半開半閉區(qū)間,表示為[a,b)或(a,b]這里的實(shí)數(shù)a,b叫做相應(yīng)區(qū)間的端點(diǎn)定義名稱符號(hào)數(shù)軸表示{x|a≤x≤b}閉區(qū)間[a,b]
ab{x|a<x<b}開區(qū)間(a,b)ab{x|a≤x<b}半開半閉區(qū)間[a,b)ab{x|a<x≤b}半開半閉區(qū)間(a,b]ab實(shí)數(shù)集R可以表示為(-∞,+∞)x≥ax>ax≤bx<b(-∞,b](-∞,b)(a,+∞)[a,+∞)數(shù)學(xué)天才——萊布尼茲
函數(shù)這個(gè)數(shù)學(xué)名詞是萊布尼茲在1694年開始使用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年企業(yè)市場(chǎng)營(yíng)銷宣傳協(xié)議
- 2025年傳統(tǒng)工藝振興戰(zhàn)略諒解協(xié)議
- 2025年中學(xué)食品安全監(jiān)管協(xié)議
- 2025年公共環(huán)境策劃改善協(xié)議
- 2025年導(dǎo)師學(xué)員攜手共進(jìn)協(xié)議書
- 2025年度股權(quán)合伙財(cái)產(chǎn)分割協(xié)議范例
- 江蘇省2025年土地使用權(quán)互換合同
- 2025年臨時(shí)辦公設(shè)施租賃合同
- 2025年企業(yè)股權(quán)融資協(xié)議書規(guī)范文本
- 2025年商業(yè)地產(chǎn)合作協(xié)議標(biāo)準(zhǔn)版
- 購(gòu)買演唱會(huì)門票的合同模板
- DB32-T 4790-2024建筑施工特種作業(yè)人員安全操作技能考核標(biāo)準(zhǔn)
- 2022年安徽阜陽太和縣人民醫(yī)院本科及以上學(xué)歷招聘筆試歷年典型考題及考點(diǎn)剖析附帶答案詳解
- 頂管工程施工及驗(yàn)收技術(shù)標(biāo)準(zhǔn)
- 【基于現(xiàn)金流的企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)探究文獻(xiàn)綜述4100字】
- TD/T 1036-2013 土地復(fù)墾質(zhì)量控制標(biāo)準(zhǔn)(正式版)
- 安全警示教育的會(huì)議記錄內(nèi)容
- 2024年度-銀行不良清收技巧培訓(xùn)課件(學(xué)員版)
- 燃燒爆炸理論及應(yīng)用 課件 第1-3章 緒論、燃燒及其災(zāi)害、物質(zhì)的燃燒
- 裝飾裝修施工新工藝
- 事業(yè)單位網(wǎng)絡(luò)安全知識(shí)培訓(xùn)
評(píng)論
0/150
提交評(píng)論