小學數(shù)學-【課堂實錄】正比例的意義教學設計學情分析教材分析課后反思_第1頁
小學數(shù)學-【課堂實錄】正比例的意義教學設計學情分析教材分析課后反思_第2頁
小學數(shù)學-【課堂實錄】正比例的意義教學設計學情分析教材分析課后反思_第3頁
小學數(shù)學-【課堂實錄】正比例的意義教學設計學情分析教材分析課后反思_第4頁
小學數(shù)學-【課堂實錄】正比例的意義教學設計學情分析教材分析課后反思_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

《正比例的意義》教學設計【教學內(nèi)容】教科書65-68頁,正比例的意義?!窘虒W目標】1、結(jié)合具體情境,學習成正比例的量和正比例關(guān)系,并了解正比例圖像。解讀正比例圖像,并能根據(jù)圖像進行推測。2、在探索正比例意義的過程中,進一步增強分析、判斷和推理能力。3、通過解決現(xiàn)實問題,滲透函數(shù)思想,引導學生進一步體驗數(shù)學與生活的聯(lián)系,感受數(shù)學的價值。【教學重點】結(jié)合實際情境認識成正比例量的特點,并能正確理解正比例的意義?!窘虒W難點】能跟據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是否成正比例。利用正比例圖像解決實際問題?!窘虒W準備】課件、投影設備、課本?!窘虒W過程】視頻引入,了解概念1.視頻引出概念。教師引起話題:同學們,最近有一個非?;鸬墓?jié)目,受到了觀眾們的熱追。更是被評為:吟詠的是詩詞,流淌的是文化。你知道是什么節(jié)目嗎?學生的想法:中國詩詞大會。教師繼續(xù)話題:沒錯,就是中國詩詞大會。(點擊課件)看來同學們中也有許多這個節(jié)目的粉絲,老師也很喜歡這個節(jié)目。下面我們來欣賞冠軍選手武亦姝的一個比賽場景。(點擊視頻)。教師設疑:哎,同學們,百人團答題情況與選手得分之間有關(guān)系嗎?學生觀看視頻后的想法很一致:百人團有多少人答錯了題,選手就得多少分。教師:真是這樣嗎?(點擊課件)從這張表中你還能知道些什么呢?可能的觀點:觀點一:百人團錯題數(shù)是逐漸增加的。觀點二:選手的得分也在逐漸增加。觀點三:百人團錯題數(shù)增加,選手得分也增加。觀點四:百人團錯題數(shù)和選手得分的比值都是一。教師根據(jù)學生回答伺機引導:也就是說只要百人團錯題數(shù)變化了,選手得分也會跟著變化。那么就是說選手得分和百人團失分這兩件事是相關(guān)聯(lián)的。像這樣一個量變化,另一個量也隨著變化,我們就把他們叫做相關(guān)聯(lián)的兩種量。這節(jié)課我們就來研究兩個相關(guān)聯(lián)的量之間的變化規(guī)律?!驹O計意圖:通過觀看中國詩詞大會的片段,根據(jù)比賽規(guī)則引出兩件有聯(lián)系的事情:百人團錯題數(shù)與選手的分數(shù)。再通過觀察發(fā)現(xiàn)這兩件事情間的變化規(guī)律,從而引出相關(guān)聯(lián)的兩個量的概念。設計貼近生活的情境,很好的激發(fā)了學生的求知欲望?!?.舉例生活中的兩種相關(guān)聯(lián)的量。教師繼續(xù)引出話題:同學們想一想,生活中有這樣相關(guān)聯(lián)的兩種量嗎?你能舉幾個例子嗎?學生根據(jù)生活經(jīng)驗舉例說明:設想一:買的東西越多,花的錢就越多。設想二:一本書,我看的越多,剩下的越少?!驹O計意圖:通過自己舉例說明生活中的兩個相關(guān)聯(lián)的量,加深對兩個相關(guān)聯(lián)的量的意義的理解。并能感受到數(shù)學與生活的密切關(guān)系?!壳榫硨?,引入新課教師:同學們,上節(jié)課我們在啤酒廠結(jié)合著運輸大麥芽這一生產(chǎn)環(huán)節(jié)認識了比例,今天就讓我們一起到啤酒的生產(chǎn)車間去參觀一下。教師出示情境圖:這就是啤酒的生產(chǎn)車間。老師根據(jù)啤酒的生產(chǎn)情況做了一個記錄表。(課件出示記錄表)教師提問:從表中你知道了哪些數(shù)學信息?學生可能的想法一:我發(fā)現(xiàn)表中有工作時間和工作總量。工作時間每增加一小時,工作總量就增加15噸。學生可能的想法二:工作時間逐漸增加,工作總量也逐漸增加。教師繼續(xù)提問:誰來說說工作總量和工作時間有什么關(guān)系?學生可能的回答:工作時間隨著工作總量的變化而變化?;蛘撸ぷ鲿r間變化了,工作總量也隨著變化教師總結(jié):所以我們就說工作總量和工作時間是兩種相關(guān)聯(lián)的量。板貼:兩種相關(guān)聯(lián)的量【設計意圖:基于教材單元情境,用簡短的談話延續(xù)走進啤酒生產(chǎn)車間的情境串,既激發(fā)了學生學習的興趣,又讓學生充分體驗數(shù)學與生活的密切聯(lián)系。通過對提供的工作時間與工作總量的數(shù)據(jù)的觀察,學生初步感知其中蘊含的規(guī)律,從而探究工作總量與工作時間關(guān)系的問題。這樣引入對本課知識的探究?!刻骄堪l(fā)現(xiàn),總結(jié)規(guī)律。1探究發(fā)現(xiàn)規(guī)律。教師談話:同學們,我們老祖宗不僅為我們留下了璀璨的詩詞文化同時也留下了寶貴的經(jīng)驗心得。有句成語叫“萬變不離其宗”,誰來說說這個成語什么意思?學生試著說明這句成語的意思。教師繼續(xù)話題:它的意思是:盡管形式上千變?nèi)f化,但其中的規(guī)律卻是不變的。這個“宗”指的就是“規(guī)律”。請你想一想,在工作總量和工作時間這兩個變化的量的背后,不變的規(guī)律是什么呢?請同學們結(jié)合記錄表研究一下,然后再小組里交流你們的發(fā)現(xiàn)并記錄下來。(老師巡視,了解學生的發(fā)現(xiàn),搜集有代表性的發(fā)現(xiàn)。)【設計意圖:通過成語“萬變不離其宗”作銜接語,不僅呼應了開頭的中國詩詞大會的意境,更是利用這句成語的意思,引導學生進行探究發(fā)現(xiàn)兩個相關(guān)聯(lián)的量之間存在的規(guī)律。更是為了在學生了解掌握了正比例的意義后,對正比例的意義進行濃縮概括做鋪墊。】教師:哪個小組想和大家來交流交流你們的發(fā)現(xiàn)?生到投影上邊展示邊講解。教師繼續(xù)提問:看來,工作總量和工作時間變化的過程中確實有一個不變的量,什么不變?學生回答:比值不變。教師:比值不變,都相等。我們也可以說比值一定。板書:比值一定教師:那求得的比值15表示的實際上就是……?板書:工作效率教師:如果用一個式子表示三者關(guān)系,怎樣寫?板書:畫上橫線和等號。教師繼續(xù)提問:回顧剛才發(fā)現(xiàn)的過程,誰能完整地說說工作總量和工作時間有什么關(guān)系?學生可能的回答:設想一:工作總量和工作時間的比值一定。設想二:工作總量和工作時間是兩種相關(guān)聯(lián)的量,工作總量隨著工作時間的變化而變化,工作總量和工作時間的比值一定。教師接著學生的回答總結(jié):這位同學總結(jié)的十分到位,他的總結(jié)涵蓋了兩個方面,一方面是工作總量和工作時間是兩種相關(guān)聯(lián)的量。另一方面工作總量和工作時間的比值一定,也就是工作效率一定。我們就說工作總量和工作時間是成正比例的量,它們的關(guān)系叫做正比例關(guān)系。這就是我們今天要學習的知識:正比例的意義。其實兩個量,只要滿足“萬變”又不離“其宗”,那就是成正比例關(guān)系。板貼:正比例的意義?!驹O計意圖:本環(huán)節(jié)通過引導學生結(jié)合記錄表深入分析數(shù)據(jù)、發(fā)現(xiàn)完善規(guī)律,在交流過程中,教師引導學生層層剖析,由淺入深,由表及里,進一步發(fā)現(xiàn)了兩個量“變化中”的“不變”,逐步把握了正比例概念的內(nèi)涵和本質(zhì)?!?.仿例練習。教師引導學生理解其他量的正比例關(guān)系:生活中其他量有沒有這種關(guān)系呢?我們再來看幾個例子。教師:這是神州九號飛船太空飛行的情況,表中有哪兩種量?板書:路程時間教師繼續(xù)提問:考慮一下,表中的路程和時間成正比例嗎?為什么?先和同桌說說吧,必要時還可以動筆算一算。教師:誰想來說一說?學可能出現(xiàn)的回答:路程和時間的比值一定。如果出現(xiàn)這樣的情況,教師就問:有沒有補充,只滿足這一個條件行嗎?學生可以根據(jù)老師的提示繼續(xù)回答:路程和時間是兩種相關(guān)聯(lián)的量,路程隨著時間的變化而變化。路程和時間的比值一定。所以,路程和時間成正比例關(guān)系。教師繼續(xù)提問進一步鞏固概念:誰再來說說?教師:說的真完整,那比值求得的是多少?(7.9)7.9表示的實際就是……(速度)板書:速度。教師總結(jié):有了這兩個條件,既“萬變”又不離“其宗”,我們就說路程和時間成正比例關(guān)系。3.認識正比例圖像。教師繼續(xù)話題:隨著中國古詩詞大會的走紅,《中國古詩詞》這本書也開始熱賣,下面是同學們購買的數(shù)量和總價的變化圖像。橫軸表示數(shù)量,縱軸表示總價,同學們都有繪制折線統(tǒng)計圖的經(jīng)驗,這個紅點表示的是?(購買一本書花了8元)這個點呢?……這個點(0)表示什么意思?這個點我們稱它為原點。教師相應的點擊課件。繼續(xù)提問:那表中這兩個量是否成正比例關(guān)系呢?學生回答。教師根據(jù)學生回答相應板書??們r/數(shù)量=單價(一定)總價和數(shù)量的比值實際上就是單價。教師引導想象:想象一下,如果將這些點依次連接,會成什么樣?用手比劃一下。(一條斜線)出示課件驗證想法:看一下,果真如此,由此可見,兩個量成正比例關(guān)系,它們的圖像是從原點出發(fā)的一條射線。【設計意圖:本環(huán)節(jié)沒有再重復上兩個情境中先出示記錄表,再讓學生判斷是否成正比例的步驟。目的一是為了直接將圖像引入,讓學生感受圖像存在的必要性;二是在完善圖像的過程中,學會觀察圖像,并能主動地將圖像和記錄表有機的結(jié)合起來。學會描點畫圖并不是認識正比例圖像的重點,而觀察并理解圖像才是學生應該掌握的技能。教學通過引導學生對數(shù)量關(guān)系間“變”與“不變”的思考分析,結(jié)合圖像特征,切實滲透了函數(shù)思想?!拷處熁仡櫱皟蓚€例子,兩個量的正比例關(guān)系圖像也是這樣嗎?看一下!根據(jù)記錄表描點,連接各點,圖像是….(從原點出發(fā)的一條射線)。神州九號的路程和時間成正比例關(guān)系,圖像也是從原點出發(fā)的一條射線。都是這樣。【設計意圖:通過反饋前兩個例子,將記錄表與正比例圖像結(jié)合起來,進一步證明所有的兩個成正比例關(guān)系的量,它們的圖像都是從原點出發(fā)的一條射線。通過大量的例子證明正比例圖像的統(tǒng)一特征。】4.正比例關(guān)系的字母表達式。教師:(課件圖像將橫軸,縱軸都變成x、y),如果我們用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,什么情況下x、y成正比例關(guān)系。學生可能的回答:設想一:x/y=k設想二:y/x=k教師根據(jù)學生的回答相應調(diào)整:可以嗎?可以,寫成y/x可以嗎?通常情況下我們都寫成y/x.教師板書:y/x=k(一定)這樣就可以了嗎?還得滿足什么條件?學生的想法:k應該是一定的。【設計意圖:利用課件,將圖像中原來的數(shù)量和總結(jié),變換成x和y。然后再總結(jié)出正比例意義的字母表達式。既能直觀形象的總結(jié)規(guī)律,又能把正比例意義與初中的正比例函數(shù)圖像相連接。為將來學習正比例函數(shù)做鋪墊?!?.解讀正比例圖像。教師銜接:因為比值一定,所以正比例圖像呈現(xiàn)出來的都是從原點出發(fā)的一條射線。請看,圖像顯示生產(chǎn)啤酒總量和所需大麥芽噸數(shù)的關(guān)系。這兩個量是否成正比例關(guān)系?學生可能的想法:觀點一:啤酒總量與所需大麥芽噸數(shù)是兩個相關(guān)聯(lián)的量。啤酒總量和所需大麥芽噸數(shù)的比值一定,都是10.所以啤酒總量和所需大麥芽噸數(shù)是成正比例的量。如果有這樣的想法,教師可以這樣引導:這位同學通過數(shù)據(jù)來判斷的,還可以怎樣判斷?這時學生就可能直接從圖像特征來判斷了。教師接著學生的回答引導:對,也可以根據(jù)正比例圖像的特征直接判斷。繼續(xù)第二個問題:看著圖說一說用7噸大麥芽能生產(chǎn)多少噸啤酒?學生可能的想法:設想一:一噸大麥芽生產(chǎn)10噸啤酒,所以7噸大麥芽就可以生產(chǎn)70噸啤酒。設想二:我是直接從圖上看出來的,所需大麥芽噸數(shù)是7,先在橫軸上找到7,向上畫直線與圖像交于一點,再通過圖像上的點,從縱軸上找到對應的啤酒噸數(shù)70。教師可以根據(jù)學生的回答相應的引導:你是算出來的,還有別的方法嗎?能根據(jù)圖像直接得到答案嗎?教師總結(jié)圖示法:橫軸表示所需大麥芽噸數(shù),先在橫軸上找到7,向上畫直線與圖像交于一點,再通過圖像上的點,從縱軸上找到對應的啤酒噸數(shù)70。教師:這種方法怎么樣?很直觀也很方便。那就請你用這種畫的方法來解決第3個問題。估計一下,要生產(chǎn)95噸啤酒大約需要多少噸大麥芽?學生在課本上畫圖。找學生起來說想法:你是怎么想的?根據(jù)學生回答做相應的操作:已知條件是啤酒的噸數(shù),先在縱軸上找到95,再通過圖像上的點,從橫軸上找到對應的大麥芽的噸數(shù)9.5.教師總結(jié):因為在畫圖的過程中,難免有誤差,所以題目中出現(xiàn)了“估計一下”這樣的字眼,可見數(shù)學的嚴謹性。也因為嚴謹,我們在畫圖時更應該力求標準,老師這里有個小建議。(播放微課)教師:課下,同學們可以親自體驗一下這個畫法。教師:這也應了陸游的那句“紙上得來終覺淺,絕知此事要躬行”學習就是這樣,只有通過練習才會知道自己有沒有掌握好新知識。那下面,我們就來做幾道練習?!驹O計意圖:本環(huán)節(jié)通過解決問題,使學生進一步明白正比例圖像是一條射線,能直觀地反映出成正比例的兩個量之間的變化規(guī)律,從而加深對正比例意義的理解。并能通過圖像直接解決相應的問題?!克?、鞏固練習,內(nèi)化新知。判斷:哪個表中的兩個量成正比例?為什么?教師:判斷哪個表中的兩種量成正比例?先思考,一會咱們再判斷,有需要可以動筆算一下。學生說出自己的判斷理由。2.判斷下面題目中的兩個量是不是成正比例,并說明理由。(生活中的兩個量)教師:依托數(shù)據(jù)比較容易說明問題,沒有數(shù)據(jù),你還會判斷嗎?請看第二題。學生相應的說出自己的判斷理由。教師設疑:為什么第三題中也沒說誰一定,怎么就判斷成正比例關(guān)系了呢?學生可能的想法:購買的同一種牌子的鉛筆,也就是這種筆的單價一定,所以,購買的數(shù)量和總價就是成正比例關(guān)系。3.判斷下面題目中的兩個量是不是成正比例,并說明理由。(幾何圖形中的兩個量)教師:幾何圖形中存不存在正比例關(guān)系呢?我們來看一下第三題。學生回答第一題。教師:利用公式的字母表達式觀察一目了然。我們還可以直觀感受一下,平行四邊形的高不變,底擴大到原來的2倍,面積會變成什么樣?這個面積是原來平行四邊形面積的幾倍?底擴大到原來的三倍,面積也跟著擴大到原來的……因為他們的比值……學生回答第二題。教師:同學們的思路很清晰。我們不妨圖形結(jié)合起來再次感受正比例的魅力。這次是圓柱的底面積不變,高擴大到原來的2倍,圓柱的體積就擴大到原來的?倍,那高擴大到原來的3倍,體積也跟著擴大原來的…..。因為他們的比值就是……底面積不變?學生回答第三題。教師:我們要判斷圓的面積和半徑成不成正比例,就得看面積S和r的比值是不是定值。是不是定值呢?π和r的乘積不是定值。那圓的面積與什么成正比例關(guān)系呢?學生回答。【設計意圖:練習的設計層次分明,第一組對比練習,讓學生在判斷分析比較活動中,進一步明晰正比例的意義,深化理解。第二組沒有提供具體數(shù)據(jù)的練習,并著重生活中的量,重在引導學生基于已有知識積累和生活經(jīng)驗,運用新知分析問題,發(fā)展了學生數(shù)學思考能力。第三組基于幾何圖形中的兩個量,利用公式進行判斷,既鞏固了學生的圖形公式,又深刻理解了正比例的含義。另外數(shù)形結(jié)合解讀對平行四邊形面積和底及圓柱的的體積和高的正比例關(guān)系,也能讓學生感受到正比例的特點及魅力?!课?、回顧整理,拓展外延。教師:同學們,通過這節(jié)課的學習,你都有什么收獲?學生回答。教師:認識了正比例后,有沒有激發(fā)起你的求知欲望?你還想學什么?(反比例)其實反比例也符合“萬變不離其宗”,哪里有區(qū)別呢,我們下節(jié)課再研究。探究科學的道路的確很長,在這里,老師希望同學們在學習的道路上能夠“欲窮千里目,更上一層樓”?!驹O計意圖:通過總結(jié),跟學生梳理本節(jié)課的知識點,并再一次內(nèi)化重難點。對反比例知識的預想,給下節(jié)課的學習留下期待。激發(fā)了學生的求知欲望?!俊墩壤囊饬x》學情分析學生在五年級上學期已經(jīng)學習過比的意義、比的化簡與比的應用,在第一個窗中又了解了比例及比例的基本性質(zhì),從學生的學習情況來考慮,正比例的意義是要從一種運動和變化的觀點去理解數(shù)量間的關(guān)系,要通過觀察、分析兩種數(shù)量之間的變化情況,變化規(guī)律,進而達到對兩個變量關(guān)系的進一步理解。因此說學生對數(shù)量關(guān)系的認識和思考將從以往的靜態(tài)過渡到今天的動態(tài)觀察分析,乃至于抽象概括上來。這種研究問題的角度,學生相對來說還是比較陌生的。在認識正比例圖像上面,因為學生有畫折線統(tǒng)計圖的經(jīng)驗,所以基本能自己動手畫出正比例函數(shù)的圖像?!墩壤囊饬x》效果分析一、課堂學習效果1.引入視頻,激發(fā)學生學習興趣明顯,更利于解讀概念。針對高年級兒童的心理特點和認知水平,本節(jié)課引入了中國詩詞大會的情境,學生在欣賞視頻的環(huán)節(jié)中類比解讀了兩種相關(guān)聯(lián)的量這一概念,這樣既吸引學生的注意力,又使原本枯燥乏味的知識變得容易且貼近生活。學生在欣賞視頻的過程中也樂于參與,可謂全情投入,在解讀了概念后,舉例生活中相關(guān)聯(lián)的兩種量的時候,可謂各抒己見,精彩紛呈。2.順勢引導,學生自主探究,掌握概念。在對兩種相關(guān)聯(lián)的量這一概念解讀之后,又引入了“萬變不離其宗”這一成語。將這一成語當成是引導學生探究的線索,也是總結(jié)成正比例關(guān)系的精華。從效果上看,學生在自主探究的過程中,關(guān)注與探究兩個變化的量背后不變的規(guī)律,在合作交流中進行思維碰撞,從而總結(jié)出規(guī)律。并結(jié)合著第一環(huán)節(jié)認知的兩種相關(guān)聯(lián)的量的概念。從而因勢利導地認知了正比例關(guān)系。并能判斷各個情境中的兩個量的正比例關(guān)系。從回顧整理中也可見學生對用成語總結(jié)規(guī)律的喜愛,很容易掌握了判斷成正比例的標準。二、學習質(zhì)量效果1.從課中評測來看,學生可以對附加題中的兩個量,利用成正比例關(guān)系的成立條件進行判斷,掌握效果很好。2.課后評測練習設計了3道有針對性和層次性的題目。從效果看,第1題,100%的學生能通過計算兩個量之間的比值是否一定,來判斷是否成正比例關(guān)系。從效果看,全班的正確率為100%。第2題,判斷生活中的兩個量是否成正比例關(guān)系,由于有個孩子思考的偏差,沒有能第一次判斷出答案,但在討論過后,這些孩子也能自主的否定自己原來的想法。第3題是判斷幾何圖形中的正比例關(guān)系。前三道題目學生完成的都很多好,都能根據(jù)公式進行判斷。但對最后的附加題目:圓的面積和誰成正比例關(guān)系呢?有些孩子不能第一時間想明白。在不斷師生共同糾錯過程中,孩子也能最終排解自己的疑惑。概念的理解真的不好量化,只要孩子能經(jīng)過思維的碰撞之后,徹底理解了就是掌握了。《正比例的意義》教材分析正比例的知識,是學生在已經(jīng)學習了比和學會了分析基本數(shù)量關(guān)系的基礎上進行學習的,是學生學習反比例知識以及進一步研究數(shù)量關(guān)系的基礎。設計意圖是力求建立在學生已有的知識經(jīng)驗基礎上,從比例的角度進一步認識數(shù)量之間的關(guān)系。教學重點是:結(jié)合實際情境認識成正比例量的特點,并能正確理解正比例的意義。教學難點是:能跟據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是否成正比例。一、通過對大量的現(xiàn)實數(shù)據(jù)進行觀察,分析其數(shù)量關(guān)系抽象出數(shù)學知識。教學時,可以通過啤酒生產(chǎn)的話題引入,出示情境圖,引導學生觀察啤酒生產(chǎn)情況記錄表,根據(jù)信息提出問題,并把學生提出的問題進行篩選整理,引入對正比例的學習,正比例的教學內(nèi)容反映的是數(shù)量間的關(guān)系,需要對大量的相關(guān)的數(shù)量進行分析、歸納、抽象,對學生的觀察、分析、推理、抽象概括能力提出較高的要求,同時也是發(fā)展學生思維能力的一個很好的教學載體。在正比例的意義的學習中可以采用“列表-觀察-討論-歸納”的方法。二、給學生較充分的思考和交流的空間,引導學生開展自主性的教學活動。在認知正比例關(guān)系成立的條件時,要創(chuàng)設開放的問題情境和寬松的學習氛圍,讓學生經(jīng)歷“做數(shù)學”的過程,自主構(gòu)建正比例的意義。三、鼓勵學生通過多個例證中找規(guī)律,增強學生對所學規(guī)律的可信度。學習了正比例概念之后,可舉出生活中成正比例的量的幾個實例,再讓學生找出生活中還有哪些量也成正比例關(guān)系,這里一定要引導學生抓住正比例的關(guān)鍵(比值一定),通過大量的實例一方面加深學生對正比例意義的理解,增強對所學規(guī)律的可信度,另一方面也讓學生感受到數(shù)學與生活的緊密聯(lián)系。四、借助正比例圖像的學習,進一步強化對正比例意義的理解,并適度進行函數(shù)思想的滲透。按照《標準》的要求“根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在有坐標系的方格上畫圖,并根據(jù)其中一個量的值估計另一個量的值”編排的,這對以后學習比例線段、函數(shù)等知識打下基礎。對正比例圖像的學習,應把它看作理解正比例意義的一種途徑,應通過分析圖像,更好地理解成正比例的兩個量之間的變化規(guī)律,不應簡單停留在描點、連線等技能的訓練上。《正比例的意義》評測練習課中評測“神舟”九號飛船太空飛行情況記錄如下:時間(秒)1234…10路程(千米)7.915.823.731.6…79路程與時間成正比例嗎?為什么?二、課后評測1.判斷下面哪兩個量成正例關(guān)系?(1)播音員播音的時間和字數(shù)如下表:時間(分)58101220字數(shù)12502000250030005000播音時間與播音字數(shù)成正比例嗎?為什么?(2)播音員播音的時間和字數(shù)如下表:時刻8:028:038:048:05已播字數(shù)2505007501000未播字數(shù)12501000750500已播字數(shù)與未播字數(shù)成正比例嗎?為什么?2.判斷下列各題中的兩種量是不是成正比例,并說明理由。(1)一個人的年齡與身高。()(2)爸爸的年齡和你的年齡。()(3)購買“中華”牌鉛筆,購買的數(shù)量和總價。()3.判斷下列各題中的兩種量是不是成正比例,并說明理由。(1)高不變,平行四邊形的的面積和底。()(2)底一定,圓柱的體積和高()(3)圓的面積和半徑()《正比例的意義》課后反思《正比例的意義》是小學五年級數(shù)學上冊的教學內(nèi)容。探究兩種量之間的比例關(guān)系是學生學習靜態(tài)數(shù)學向動態(tài)數(shù)學過渡的一個重要環(huán)節(jié)。它是學生今后學習函數(shù)的一個重要基礎,學好它意義重大。當然,學生初步接觸到動態(tài)的數(shù)學,在觀念上轉(zhuǎn)變較難。為了突破難點,在教學后,有如下一些感受。1、挖掘生活中的數(shù)學源泉,為學生提供感性材料。數(shù)學來源于生活,又服務于生活。新的《數(shù)學課程標準》明確要求“使學生感受數(shù)學與生活的密切聯(lián)系,從學生已有的生活經(jīng)驗出發(fā),讓學生親歷數(shù)學的過程”。關(guān)注學生已有的生活經(jīng)驗和興趣,通過現(xiàn)實生活中的素材引入新課,使抽象的數(shù)學知識具有豐富的現(xiàn)實背景,為學生的數(shù)學學習提供了生動活潑、主動的材料與環(huán)境。作為成正比例的必備條件:兩種相關(guān)聯(lián)的量,學生第一次接觸,難免會覺得生疏。為了能讓學生自然的,逐漸地理解這個概念的意義。我從情境入手,將最近很火的而且很受學生們歡迎的一檔節(jié)目引入課堂。巧妙地運用了節(jié)目中兩種量的關(guān)系,自然地把兩種相關(guān)聯(lián)的量這一概念提出來。在學生理解了概念的同時也感受到了數(shù)學和生活的聯(lián)系。繼而,在隨后的舉例生活中的兩種相關(guān)聯(lián)的量時,學生們就能根據(jù)自己的生活經(jīng)驗,舉出了很多跟自己生活學習息息相關(guān)的例子:例如:寫的作業(yè)越多,剩下的就越少;作業(yè)越多,用的時間也就越長等等。隨后的情境和仿例中提到的工作時間、工作總量以及路程和時間都是是學生所熟悉的,貼近了學生的生活,故很快將學生帶入輕松愉快的學習環(huán)境,創(chuàng)設了良好的教學情境,學生及時進入狀態(tài),手腦并用,課堂氣氛十分活躍。后面的各層次練習如:身高和年齡、爸爸年齡和你的年齡、同一品牌的筆的總價和數(shù)量等都密切聯(lián)系生活,讓學生從生活中學習數(shù)學,讓學生感覺到數(shù)學就在我們身邊,從而對數(shù)學產(chǎn)生親切感。2、經(jīng)歷“探究”的過程,讓學生自主建構(gòu)正比例的意義。整個探究過程中給學生較充分的思考和交流的空間,引導學生開展自主性的數(shù)學活動。如:找量的變化規(guī)律、變中不變的因素、對比找出本質(zhì)特征、猜想、給出定義、字母公式表示、解決問題、畫圖等,主要由學生進行,學生經(jīng)歷“觀察、分析、比較、歸納、應用”過程,將實際問題抽象成數(shù)學模型并進行解釋應用。教師在學生探究活動中,是組織者、引導者,更是參與者、合作者,學生感受到自己是學習主人,規(guī)律是自己發(fā)現(xiàn)的,學完后很有成就感。例如:在了解感知正比例圖像的時候,我將教材進行了創(chuàng)造性地運用,不是簡單地給學生呈現(xiàn)出一個正比例圖像,單純地告訴學生兩個量的變化情況可以用下圖表示。而是讓學生一起經(jīng)歷了創(chuàng)造正比例圖像的過程,感受到正比例圖像存在的價值。并在這個過程中解讀了正比例圖像。這是一個創(chuàng)造并收獲成就感的過程。3、感受知識的連續(xù)性,為學生搭建認知平臺。在知識的系統(tǒng)中學習。知識與知識之間是相互聯(lián)系的,相互聯(lián)系的知識就形成知識系統(tǒng)。如果學生能在知識的系統(tǒng)中學習,在知識的對比中學習,在學習中體會知識的聯(lián)系和區(qū)別,那么學生就會對所學知識有更深刻的認識,更利于學生建立、完善科學的認知結(jié)構(gòu)。如,教材中設計的練習中有判斷平行四邊形的面積與底、圓柱的體積和高、以及圓的面積和半徑等是不是正比例關(guān)系的問題?;仡櫿碇?,學生對反比例的預期,老師用“萬變不離其宗”的點撥,讓學生在對比中學習,學習的思維就會更為深刻,知識的系統(tǒng)性就會更強。《正比例的意義》課標分析一、課標要求《義務教育數(shù)學課程標準(2011年版)》在“學段目標”的“第二學段”中提出:“會獨立思考,體會一些數(shù)學的基本思想”“嘗試從日常生活中發(fā)現(xiàn)并提出簡單的數(shù)學問題,并運用一些知識加以解決”“能探索分析和解決簡單問題的有效方法,了解解決問題方法的多樣性”“能回顧解決問題的過程,初步判斷結(jié)果的合理性”“在運用數(shù)學知識和方法解決問題的過程中,認識數(shù)學的價值”?!读x務教育數(shù)學課程標準(2011年版)》在“課程內(nèi)容”的“第二學段”中提出:“在實際情境中理解比及按比例分配的含義,并能解決簡單的問題”“通過具體情境,認識成正比例的量和成反比例的量”“會根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在方格紙上畫圖,并會根據(jù)其中一個量的值估計另一個量的值”“能找出生活中成正比例和成反比例關(guān)系量的實例,并進行交流”。二、課標解讀(一)借助生活實際,重視概念的理解與應用。正比例是一類常見的數(shù)量關(guān)系,這部分內(nèi)容的學習是函數(shù)思想在小學的體現(xiàn)。在現(xiàn)實中,有許多數(shù)量關(guān)系可以表示為成正比例的量,其本質(zhì)是兩個量按一定的比例關(guān)系發(fā)生變化(即正比例關(guān)系)。從本質(zhì)上說,正比例是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論