2024屆四川省成都石室天府高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第1頁
2024屆四川省成都石室天府高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第2頁
2024屆四川省成都石室天府高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第3頁
2024屆四川省成都石室天府高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第4頁
2024屆四川省成都石室天府高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆四川省成都石室天府高二上數(shù)學(xué)期末綜合測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線C:的漸近線方程為()A. B.C. D.2.已知雙曲線的右焦點(diǎn)為,漸近線為,,過的直線與垂直,且交于點(diǎn),交于點(diǎn),若,則雙曲線的離心率為()A. B.C.2 D.3.阿基米德(公元前287年~公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓C的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在y軸上,且橢圓C的離心率為,面積為6π,則橢圓C的標(biāo)準(zhǔn)方程為()A. B.C. D.4.用這3個(gè)數(shù)組成沒有重復(fù)數(shù)字的三位數(shù),則事件“這個(gè)三位數(shù)是偶數(shù)”與事件“這個(gè)三位數(shù)大于342”()A.是互斥但不對(duì)立事件 B.不是互斥事件C.是對(duì)立事件 D.是不可能事件5.已知點(diǎn)是橢圓上的任意一點(diǎn),過點(diǎn)作圓:的切線,設(shè)其中一個(gè)切點(diǎn)為,則的取值范圍為()A. B.C. D.6.過點(diǎn)且與直線垂直的直線方程是()A. B.C. D.7.如圖在平行六面體中,與的交點(diǎn)記為.設(shè),,,則下列向量中與相等的向量是()A. B.C. D.8.設(shè),則是的A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件9.?dāng)?shù)列中,,,若,則()A.2 B.3C.4 D.510.兩圓與的公切線有()A.1條 B.2條C.3條 D.4條11.已知等差數(shù)列滿足,,則()A. B.C. D.12.已知雙曲線的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),M,N兩點(diǎn)分別在C的左、右兩支上,若四邊形OFMN為菱形,則C的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,,則__________.14.當(dāng)曲線與直線有兩個(gè)不同的交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是____________15.在等比數(shù)列中,,,若數(shù)列滿足,則數(shù)列的前項(xiàng)和為________16.已知命題恒成立;,若p,均為真,則實(shí)數(shù)a的取值范圍__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在①,;②,,③,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中并解決問題問題:設(shè)等差數(shù)列的前項(xiàng)和為,________________,若,判斷是否存在最大值,若存在,求出取最大值時(shí)的值;若不存在,說明理由注:如果選擇多個(gè)條件分別解答.按第一個(gè)解答記分18.(12分)已知圓的圓心在直線,且與直線相切于點(diǎn).(1)求圓的方程;(2)直線過點(diǎn)且與圓相交,所得弦長(zhǎng)為,求直線的方程.19.(12分)在數(shù)列中,,且成等比數(shù)列(1)證明數(shù)列是等差數(shù)列,并求的通項(xiàng)公式;(2)設(shè)數(shù)列滿足,其前項(xiàng)和為,證明:20.(12分)已知拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),如圖,過點(diǎn)任作兩條互相垂直的直線,,分別交拋物線于,,,四點(diǎn),,分別為,的中點(diǎn).(1)求的值;(2)求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(3)設(shè)直線交拋物線于,兩點(diǎn),試求的最小值.21.(12分)已知三角形的內(nèi)角所對(duì)的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.22.(10分)在等差數(shù)列中,,.(1)求數(shù)列通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】根據(jù)給定的雙曲線方程直接求出其漸近線方程作答.【題目詳解】雙曲線C:的實(shí)半軸長(zhǎng),虛半軸長(zhǎng),即有,而雙曲線C的焦點(diǎn)在y軸上,所以雙曲線C的漸近線的方程為,即.故選:D2、C【解題分析】由題設(shè)易知是的中垂線,進(jìn)而可得,結(jié)合雙曲線參數(shù)關(guān)系及離心率公式求雙曲線的離心率即可.【題目詳解】由題意,是的中垂線,故,由對(duì)稱性得,則,故,∴.故選:C.3、D【解題分析】設(shè)橢圓的方程為,根據(jù)題意得到和,求得的值,即可求解.【題目詳解】由題意,橢圓的焦點(diǎn)在軸上,可設(shè)橢圓的方程為,因?yàn)闄E圓C的離心率為,可得,又由,即,解得,又因?yàn)闄E圓的面積為,可得,即,聯(lián)立方程組,解答,所以橢圓方程為.故選:D.4、B【解題分析】根據(jù)題意列舉出所有可能性,進(jìn)而根據(jù)各類事件的定義求得答案.【題目詳解】由題意,將2,3,4組成一個(gè)沒有重復(fù)數(shù)字的三位數(shù)的情況有:{234,243,324,342,423,432},其中偶數(shù)有{234,324,342,432},大于342的有{423,432}.所以兩個(gè)事件不是互斥事件,也不是對(duì)立事件.故選:B.5、B【解題分析】設(shè),得到,利用橢圓的范圍求解.【題目詳解】解:設(shè),則,,,因?yàn)?,所以,即,故選:B6、C【解題分析】根據(jù)兩直線垂直時(shí)斜率乘積為,可以直接求出所求直線的斜率,再根據(jù)點(diǎn)斜式求出直線方程,最后化成一般式方程即可.【題目詳解】因?yàn)橹本€的斜率為,故所求直線的斜率等于,所求直線的方程為,即,故選:C7、B【解題分析】利用空間向量的加法和減法法則可得出關(guān)于、、的表達(dá)式.【題目詳解】故選:B.8、B【解題分析】,,所以是必要不充分條件,故選B.考點(diǎn):1.指、對(duì)數(shù)函數(shù)的性質(zhì);2.充分條件與必要條件.9、C【解題分析】由已知得數(shù)列是以2為首項(xiàng),以2為公比的等比數(shù)列,求出,再利用等比數(shù)列求和可得答案.【題目詳解】∵,∴,所以,數(shù)列是以2為首項(xiàng),以2為公比的等比數(shù)列,則,∴,∴,則,解得.故選:C.10、D【解題分析】求得圓心坐標(biāo)分別為,半徑分別為,根據(jù)圓圓的位置關(guān)系的判定方法,得出兩圓的位置關(guān)系,即可求解.【題目詳解】由題意,圓與圓,可得圓心坐標(biāo)分別為,半徑分別為,則,所以,可得圓外離,所以兩圓共有4條切線.故選:D.11、D【解題分析】根據(jù)等差數(shù)列的通項(xiàng)公式求出公差,再結(jié)合即可得的值.【題目詳解】因?yàn)槭堑炔顢?shù)列,設(shè)公差為,所以,即,所以,所以,故選:D.12、C【解題分析】由題意可得且,從而求出點(diǎn)的坐標(biāo),將其代入雙曲線方程中,即可得出離心率.【題目詳解】由題意,四邊形為菱形,如圖,則且,分別為的左,右支上的點(diǎn),設(shè)點(diǎn)在第二象限,在第一象限.由雙曲線的對(duì)稱性,可得,過點(diǎn)作軸交軸于點(diǎn),則,所以,則,所以,所以,則,即,解得,或,由雙曲線的離心率,所以取,則故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【題目詳解】解:因?yàn)樵谥?,,,,所以由余弦定理可得,所以,即,則故答案為:14、【解題分析】求出直線恒過的定點(diǎn),結(jié)合曲線的圖象,數(shù)形結(jié)合,找出臨界狀態(tài),即可求得的取值范圍.【題目詳解】因?yàn)?,故可得,其表示圓心為,半徑為的圓的上半部分;因?yàn)?,即,其表示過點(diǎn),且斜率為的直線.在同一坐標(biāo)系下作圖如下:不妨設(shè)點(diǎn),直線斜率為,且過點(diǎn)與圓相切的直線斜率為數(shù)形結(jié)合可知:要使得曲線與直線有兩個(gè)不同的交點(diǎn),只需即可.容易知:;不妨設(shè)過點(diǎn)與相切的直線方程為,則由直線與圓相切可得:,解得,故.故答案為:.15、【解題分析】求出等比數(shù)列的通項(xiàng)公式,可得出的通項(xiàng)公式,推導(dǎo)出數(shù)列為等差數(shù)列,利用等差數(shù)列的求和公式即可得解.【題目詳解】設(shè)等比數(shù)列的公比為,則,則,所以,,則,所以,數(shù)列為等差數(shù)列,故數(shù)列的前項(xiàng)和為.故答案為:.16、【解題分析】根據(jù)題意得到命題為真命題,為假命題,結(jié)合二次函數(shù)的圖象與性質(zhì),即可求解.【題目詳解】根據(jù)題意,命題,均為真命題,可得命題為真命題,為假命題,由命題恒成立,可得,解得;又由命題為假命題,可得,解得,所以,即實(shí)數(shù)a的取值范圍為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、答案不唯一,具體見解析【解題分析】選①:易得,法一:令求n,即可為何值時(shí)取最大值;法二:寫出,利用等差數(shù)列前n項(xiàng)和的函數(shù)性質(zhì)判斷為何值時(shí)有最大值;選②:由數(shù)列前n項(xiàng)和及等差數(shù)列下標(biāo)和的性質(zhì)易得、即可確定有最大值時(shí)值;選③:由等差數(shù)列前n項(xiàng)和公式易得、即可確定有最大值時(shí)值;【題目詳解】選①:設(shè)數(shù)列的公差為,,,解得,即,法一:當(dāng)時(shí),有,得,∴當(dāng)時(shí),;,;時(shí),,∴或時(shí),取最大值法二:,對(duì)稱軸,∴或時(shí),取最大值選②:由,得,由等差中項(xiàng)的性質(zhì)有,即,由,得,∴,故,∴當(dāng)時(shí),,時(shí),,故時(shí),取最大值選③:由,得,可得,由,得,可得,∴,故,∴當(dāng)時(shí),,時(shí),,故時(shí),取最大值【題目點(diǎn)撥】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)所選的條件,結(jié)合等差數(shù)列前n項(xiàng)和公式的性質(zhì)、下標(biāo)和相等的性質(zhì)等確定數(shù)列中項(xiàng)的正負(fù)性,找到界點(diǎn)n值即可.18、(1)(2)或【解題分析】(1)分析可知圓心在直線上,聯(lián)立兩直線方程,可得出圓心的坐標(biāo),計(jì)算出圓的半徑,即可得出圓的方程;(2)利用勾股定理求出圓心到直線的距離,然后對(duì)直線的斜率是否存在進(jìn)行分類討論,設(shè)出直線的方程,利用點(diǎn)到直線的距離公式求出參數(shù),即可得出直線的方程.【小問1詳解】解:過點(diǎn)且與直線垂直的直線的方程為,由題意可知,圓心即為直線與直線的交點(diǎn),聯(lián)立,解得,故圓的半徑為,因此,圓的方程為.【小問2詳解】解:由勾股定理可知,圓心到直線的距離為.當(dāng)直線的斜率不存在時(shí),直線的方程為,圓心到直線的距離為,滿足條件;當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,即,由題意可得,解得,此時(shí),直線的方程為,即.綜上所述,直線的方程為或.19、(1)證明見解析;;(2)證明見解析【解題分析】(1)利用已知條件推出數(shù)列是等差數(shù)列,其公差為,首項(xiàng)為1,求出通項(xiàng)公式,結(jié)合由,,成等比數(shù)列,轉(zhuǎn)化求解即可.(2)化簡(jiǎn)通項(xiàng)公式,利用裂項(xiàng)消項(xiàng)法,求解數(shù)列的和即可【題目詳解】證明:(1)由,得,即,所以數(shù)列是等差數(shù)列,其公差為,首項(xiàng)為1,因此,,,由成等比數(shù)列,得,即,解得或(舍去),故(2)因?yàn)?,所以因?yàn)?,所以【題目點(diǎn)撥】方法點(diǎn)睛:裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),掌握一些常見的裂項(xiàng)技巧:①;②;③;④;此外,需注意裂項(xiàng)之后相消的過程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.20、(1)(2)證明見解析,(3,0)(3)【解題分析】(1)求出橢圓的焦點(diǎn)坐標(biāo),從而可知拋物線的焦點(diǎn)坐標(biāo),進(jìn)而可得的值;(2)首先設(shè)出直線的方程,聯(lián)立直線與拋物線的方程,得到,坐標(biāo),令,可得直線過點(diǎn),再證明當(dāng),,,三點(diǎn)共線即可;(3)設(shè)出的直線方程,聯(lián)立直線與拋物線的方程,利用韋達(dá)定理找出根的關(guān)系,再利用兩點(diǎn)間的距離公式求出最小值即可.【小問1詳解】橢圓的焦點(diǎn)坐標(biāo)為,由于拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),故,即,;小問2詳解】由(1)知,拋物線的方程為,設(shè),,,,由題意,直線的斜率存在且設(shè)直線的方程為,代入可得,則,故,故的中點(diǎn)坐標(biāo)為,由,設(shè)直線的方程為,代入可得,則,故,可得的中點(diǎn)坐標(biāo)為,令得,此時(shí),故直線過點(diǎn),當(dāng)時(shí),,所以,,,三點(diǎn)共線,所以直線過定點(diǎn).【小問3詳解】設(shè),由題意直線的斜率存在,設(shè)直線的方程為,代入可得,則,,,故,當(dāng)即直線垂直軸時(shí),取得最小值.21、(1)(2)【解題分析】(1)由正弦定理邊化角,可求得角的正弦,由同角關(guān)系結(jié)合條件可得答案.(2)由(1),由余弦定理,求出邊的長(zhǎng),進(jìn)一步

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論