一元二次方程的應(yīng)用(借鑒8篇)_第1頁
一元二次方程的應(yīng)用(借鑒8篇)_第2頁
一元二次方程的應(yīng)用(借鑒8篇)_第3頁
一元二次方程的應(yīng)用(借鑒8篇)_第4頁
一元二次方程的應(yīng)用(借鑒8篇)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第第頁一元二次方程的應(yīng)用(優(yōu)秀8篇)作為一位無私奉獻(xiàn)的人民教師,就有可能用到教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。教案應(yīng)該怎么寫才好呢?讀書破萬卷下筆如有神,下面小編為您精心整理了8篇《一元二次方程的應(yīng)用》,在大家參考的同時(shí),也可以分享一下小編給您的好友哦。

《一元二次方程》的優(yōu)秀教案篇一

教學(xué)內(nèi)容

一元二次方程概念及一元二次方程一般式及有關(guān)概念.

教學(xué)目標(biāo)

了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;應(yīng)用一元二次方程概念解決一些簡單題目.

1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義.

2.一元二次方程的一般形式及其有關(guān)概念.

3.解決一些概念性的題目.

4.態(tài)度、情感、價(jià)值觀

4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情.

重難點(diǎn)關(guān)鍵

1.重點(diǎn):一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題.

2.難點(diǎn)關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念.

教學(xué)過程

一、復(fù)習(xí)引入

學(xué)生活動(dòng):列方程.

問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”

大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?

如果假設(shè)門的高為x尺,那么,這個(gè)門的寬為_______尺,根據(jù)題意,得________.

整理、化簡,得:__________.

問題(2)如圖,如果,那么點(diǎn)C叫做線段AB的黃金分割點(diǎn).

如果假設(shè)剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據(jù)題意,得:_______.

整理,得:________.

老師點(diǎn)評并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理.

二、探索新知

學(xué)生活動(dòng):請口答下面問題.

(1)上面三個(gè)方程整理后含有幾個(gè)未知數(shù)?

(2)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?

(3)有等號(hào)嗎?或與以前多項(xiàng)式一樣只有式子?

老師點(diǎn)評:(1)都只含一個(gè)未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號(hào),是方程.

因此,像這樣的方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.

一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.

一個(gè)一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).

例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).

分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必須運(yùn)用整式運(yùn)算進(jìn)行整理,包括去括號(hào)、移項(xiàng)等.

解:去括號(hào),得:

40-16x-10x+4x2=18

移項(xiàng),得:4x2-26x+22=0

其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22.

例2.(學(xué)生活動(dòng):請二至三位同學(xué)上臺(tái)演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)、二次項(xiàng)系數(shù);一次項(xiàng)、一次項(xiàng)系數(shù);常數(shù)項(xiàng).

分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.

解:去括號(hào),得:

x2+2x+1+x2-4=1

移項(xiàng),合并得:2x2+2x-4=0

其中:二次項(xiàng)2x2,二次項(xiàng)系數(shù)2;一次項(xiàng)2x,一次項(xiàng)系數(shù)2;常數(shù)項(xiàng)-4.

三、鞏固練習(xí)

教材P32練習(xí)1、2

四、應(yīng)用拓展

例3.求證:關(guān)于x的方程(2-8+17)x2+2x+1=0,不論取何值,該方程都是一元二次方程.

分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可.

證明:2-8+17=(-4)2+1

∵(-4)2≥0

∴(-4)2+10,即(-4)2+1≠0

∴不論取何值,該方程都是一元二次方程.

五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評)

本節(jié)課要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項(xiàng)、二次項(xiàng)系數(shù),一次項(xiàng)、一次項(xiàng)系數(shù),常數(shù)項(xiàng)的概念及其它們的運(yùn)用.

六、布置作業(yè)

數(shù)學(xué)《一元二次方程》教案設(shè)計(jì)篇二

教材分析

一元二次方程是一種數(shù)學(xué)建模的方法,它有著廣泛的實(shí)際背景,可以作為許多實(shí)際問題的數(shù)學(xué)模型。它體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,一元二次方程是高中數(shù)學(xué)的奠基工程。是本書的重點(diǎn)內(nèi)容,為后續(xù)學(xué)習(xí)打下良好的基礎(chǔ)。

學(xué)情分析

1、經(jīng)過兩年的合作,我們班的學(xué)生已比較配合我上課,同時(shí)初三學(xué)生觀察、類比、概括、歸納能力也都比較強(qiáng),不過對應(yīng)用題的分析他們還是覺得很頭疼,在今后應(yīng)用題的教學(xué)中需進(jìn)一步加強(qiáng)。

2、一元二次方程是在學(xué)習(xí)《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學(xué)習(xí)的,一元二次方程是一次方程向二次方程的轉(zhuǎn)化,是低次方程轉(zhuǎn)向高次方程求解方法的階梯。一元二次方程又是二次函數(shù)的特例。

教學(xué)目標(biāo)

一、知識(shí)目標(biāo)

1、在分析、揭示實(shí)際問題的數(shù)量關(guān)系并把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中,使學(xué)生感受方程是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的工具,,增加對一元二次方程的感性認(rèn)識(shí)。

2、理解一元二次方程的概念。

3、掌握一元二次方程的一般形式,正確認(rèn)識(shí)二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng)。

二、能力目標(biāo)

1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力。

2、由知識(shí)來源于實(shí)際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,進(jìn)一步提高學(xué)生分析問題、解決問題的能力。

四、情感目標(biāo)

1、培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、自主學(xué)習(xí)和合作交流的意識(shí)。

2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會(huì)學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識(shí)

教學(xué)重點(diǎn)和難點(diǎn)

教學(xué)重點(diǎn):一元二次方程的概念和它的一般形式

難點(diǎn):1、從實(shí)際問題中抽象出一元二次方程。2、正確識(shí)別一般式中的“項(xiàng)”及“系數(shù)”

元二次方程的應(yīng)用篇三

一元二次方程的應(yīng)用中例1:用22cm長的鐵絲折成一個(gè)面積為30cm2的矩形,求這個(gè)矩形的長與寬。這是面積問題中的一個(gè)典型例題,我在引導(dǎo)學(xué)生解決此題之后,馬上改編為:用22cm長的鐵絲能不能折成一個(gè)面積為32cm2的矩形?試分析你的結(jié)論。通過此題,與一元二次方程的判別式聯(lián)系起來,前后知識(shí)融會(huì)貫通。又改編為:有一面積為150m2的長方形雞場,雞場的一邊*墻(墻長18)另三邊用竹籬笆圍成,如果竹籬笆的長為35,求雞場的長與寬。

通過變式訓(xùn)練,讓學(xué)生由淺入深,由易到難,也讓學(xué)生解決問題的能力逐級(jí)上升,這是這節(jié)課中的一大亮點(diǎn)。

數(shù)學(xué)《一元二次方程》教案設(shè)計(jì)篇四

教學(xué)目標(biāo)

1、了解整式方程和一元二次方程的概念;

2、知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。

3、通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

教學(xué)重點(diǎn)和難點(diǎn):

重點(diǎn):一元二次方程的概念和它的一般形式。

難點(diǎn):對一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。

教學(xué)建議:

1、教材分析:

1)知識(shí)結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。

2)重點(diǎn)、難點(diǎn)分析

理解一元二次方程的定義:

是一元二次方程的重要組成部分。方程,只有當(dāng)時(shí),才叫做一元二次方程。如果且,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。

(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時(shí)題中隱含了的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時(shí),它是一元一次方程;當(dāng)時(shí),它是一元二次方程,解題時(shí)就會(huì)有不同的結(jié)果。

《一元二次方程》的優(yōu)秀教案篇五

教學(xué)目標(biāo)

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式,一元二次方程。

3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

教學(xué)重點(diǎn)和難點(diǎn):

重點(diǎn):一元二次方程的概念和它的一般形式。

難點(diǎn):對一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。

教學(xué)建議:

1.教材分析:

1)知識(shí)結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。

2)重點(diǎn)、難點(diǎn)分析

理解一元二次方程的定義:

是一元二次方程的重要組成部分。方程,只有當(dāng)時(shí),才叫做一元二次方程。如果且,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。

(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時(shí)題中隱含了的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時(shí),它是一元一次方程;當(dāng)時(shí),它是一元二次方程,解題時(shí)就會(huì)有不同的結(jié)果。

教學(xué)目的

1、了解整式方程和一元二次方程的概念;

2、知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。

3、通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

教學(xué)難點(diǎn)和難點(diǎn):重點(diǎn):

1.一元二次方程的有關(guān)概念

2.會(huì)把一元二次方程化成一般形式

難點(diǎn):一元二次方程的含義。

教學(xué)過程設(shè)計(jì)

一、引入新課

引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?

分析:1.要解決這個(gè)問題,就要求出鐵片的長和寬。

2、這個(gè)問題用什么數(shù)學(xué)方法解決?(間接計(jì)算即列方程解應(yīng)用題。

3.讓學(xué)生自己列出方程(x(x十5)=150)

深入引導(dǎo):方程x(x十5)=150有人會(huì)解嗎?你能叫出這個(gè)方程的名字嗎?

二、新課

1.從上面的引例我們有這樣一個(gè)感覺:在解決日常生活的計(jì)算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實(shí)上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程一元一二次方程(板書課題)

2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個(gè)方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點(diǎn)來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個(gè)整式方程,但是一個(gè)整式方程未必就是一個(gè)一元二次方程、這還取決于未知數(shù)的最高次數(shù)是幾。如果方程未知數(shù)的最高次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)

3.強(qiáng)化一元二次方程的概念

下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?

(1)3x十2=5x—3:

(2)x2=4

(3)(x十3)(3x·4)=(x十2)2;

(4)(x—1)(x—2)=x2十8

從以上4例讓學(xué)生明白判斷一個(gè)方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個(gè)方程未知數(shù)的最高次數(shù)是否是2。

4、一元二次方程概念的延伸

提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?

引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項(xiàng)的情況,啟發(fā)學(xué)生運(yùn)用字母,找到一元二次方程的一般形式

ax2+bx+c=0(a≠0)

1).提問a=0時(shí)方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。

2).講解方程中ax2、bx、c各項(xiàng)的名稱及a、b的系數(shù)名稱.

3).強(qiáng)調(diào):一元二次方程的一般形式中“=”的左邊最多三項(xiàng)、其中一次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。

強(qiáng)化概念(課本P6)

1.說出下列一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):

(1)x2十3x十2=O(2)x2—3x十4=0;(3)3x2-5=0

(4)4x2十3x—2=0;(5)3x2—5=0;(6)6x2—x=0。

2、把下列方程先化成二元二次方程的一般形式,再寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):

(1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

課堂小節(jié)

(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的最高次數(shù)為2,這樣的整式方程叫做一元一二次方程);

(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項(xiàng)、其中二次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在。特別注意的是“=”的右邊必須整理成0;

(3)要很熟練地說出隨便一個(gè)一元二次方程中一二次項(xiàng)、一次項(xiàng)、常數(shù)項(xiàng):二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù).

課外作業(yè):略

《一元二次方程》的優(yōu)秀教案篇六

1、自我介紹:30s

大家下午好!我叫XXX,20XX年畢業(yè)于暨南大學(xué),學(xué)的行政管理,現(xiàn)在教的是初中數(shù)學(xué),希望能與大家有一個(gè)愉快的下午!

2、一元二次方程概念、系數(shù)、根的判別式:8min30s

我們今天的課堂內(nèi)容是復(fù)習(xí)一元二次方程。首先請同學(xué)們看黑板上的這4個(gè)等式,請判斷等式是否是一元二次方程,如果是請說出該一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)以及常數(shù)項(xiàng):

(1)x-10x+9=0是1-109

(2)x+2=0是102

(3)ax+bx+c=0不是a必須不等于0(追問為什么)

(4)3x-5x=3x不是整理式子得-5x=0所以為一元一次方程(追問為什么)好,同學(xué)們都回答得非常好!那么我們所說的一元二次方程究竟是什么呢?我們從它的名字可以得出它的定義!

一元:只含一個(gè)未知數(shù)

二次:含未知數(shù)項(xiàng)的最高次數(shù)為2

方程:一個(gè)等式

一元二次方程的一般形式為:ax+bx+c=0(a≠0)其中,a為二次項(xiàng)系數(shù)、b為一次項(xiàng)系數(shù)、c為常數(shù)項(xiàng)。記住,a一定不為0,b、c都有可能等于0,一元二次方程的形式多種多樣,所以大家要注意找系數(shù)時(shí)先將一元二次方程化為一般式!至于一個(gè)一元二次方程有沒有根怎么判斷,有同學(xué)能告訴老師嗎?(沒有就自己講),好非常好!我們知道Δ是等于2-4ac的,當(dāng)Δ0時(shí),方程有2個(gè)不相同的實(shí)數(shù)根;當(dāng)Δ=0時(shí),方程有兩個(gè)相同的實(shí)數(shù)根;當(dāng)Δ0時(shí),方程無實(shí)根。那我們在求方程根之前先利用Δ判斷一下根的情況,如果小于0,那么就直接判斷無解,如果大于等于0,則需要進(jìn)一步求方程根。

3、一元二次方程的解法:20min

那說到求方程的根我們究竟學(xué)了幾種求一元二次方程根的方法呢?我知道同學(xué)們肯定心里有答案,就讓老師為你們一一梳理~

(1)直接開方法

遇到形如x=n的二元一次方程,可以直接使用開方法來求解。若n0,方程無解;若n=0,則x=0,若n0,則x=±n。同學(xué)們能明白嗎?

(2)配方法

大家覺得直接開平方好不好用?簡不簡單?那大家肯定都想用直接開方法來做題,是吧?當(dāng)然,中考題簡單也不至于這么簡單~但是我們可以通過配方法來將方程往完全平方形式變化。配方法我們通過2道例題來鞏固一下:

簡單的一眼看出來的:x-2x+1=0(x-1)=0(讓同學(xué)回答)

需要變換的:2x+4x-8=0

步驟:將二次項(xiàng)系數(shù)化為1,左右同除2得:x+2x-4=0

將常數(shù)項(xiàng)移到等號(hào)右邊得:x+2x=4

左右同時(shí)加上一次項(xiàng)系數(shù)一半的平方得:x+2x+1=4+1

所以有方程為:(x+1)=5形似x=n

然后用直接開平方解得x+1=±5x=±5-1

大家能聽懂嗎?現(xiàn)在我們一起來做一道練習(xí)題,2min時(shí)間,大家一起報(bào)個(gè)答案給我!

題目:1/2x-5x-1=0答案:x=±+5

大家都會(huì)做嗎?還需要講解詳細(xì)步驟嗎?

(3)講完了直接開方法、配方法之后我們來講一個(gè)萬能的公式法。只要知道abc,沒有公式法求不出來的解,當(dāng)然啦,除非是無解~

首先,公式法里面的公式大家還記得嗎?

x=(-b±2-4ac)/2a

這個(gè)公式是怎么來的呢?有同學(xué)知道的嗎?就是將一般式配方法得到的x的表達(dá)式,大家記住,會(huì)用就可以了,如果有興趣可以課后試著用配方法進(jìn)行推導(dǎo),也歡迎課后找我探討~這個(gè)公式法用起來非常簡單,一找數(shù)、二代入、三化簡。我們來做一道簡單的例題:

3x-2x-4=0

其中a=3,b=-2,c=-4

帶入公式得:x=((-(-2))±2)2-4x(-4)x3/(2x3)

化簡得:x1=(1-)/3x2=(1+)/3

同學(xué)們你們解對了嗎?

使用公式法時(shí)要注意的點(diǎn):系數(shù)的符號(hào)要看準(zhǔn)、代入和化簡要細(xì)心,不要馬失前蹄哈~

(4)今天的第四種解方程的方法叫因式分解法。因式分解大家會(huì)嗎?好那今天由我來帶大家一起見識(shí)一下因式分解的魅力!

簡單來說,因式分解就是將多項(xiàng)式化為式子的乘積形式。

比如說ab+ab可以化成ab(1+a)的乘積形式。

那么對于二元一次方程,我們的目標(biāo)是要將其化成(mx+a)x(nx+b)=0這樣就可以解出x=-a/mx=-b/n

我們一起做一個(gè)例題鞏固一下:4x+5x+1=0

則可以化成4x+x+4x+1=0x(4x+1)+(4x+1)=0(x+1)(4x+1)=0

所以有x=-1x=-1/4

同學(xué)們都能明白嗎?就是找出公因式,將多項(xiàng)式化為因式的乘積形式從而求解。練習(xí)題:x-5x+6=0x=2x=3

x-9=0x=3x=-3

4、總結(jié):1min

好,復(fù)習(xí)完了二元一次方程我們熟知它的概念。只含有一個(gè)未知數(shù)且未知數(shù)項(xiàng)最高次數(shù)為2的等式,叫做二元一次方程。我們還要會(huì)找abc系數(shù),會(huì)用Δ=b-4ac來判別方程實(shí)根的情況。還需要熟悉四種方程的解法,這是中考的重點(diǎn)考察內(nèi)容。當(dāng)然,具體用哪一種解題方法就需要結(jié)合具體的題目來選擇了。如果形式簡單可以直接用開平方則直接用開平方,否則首選因式分解法,再者選擇配方法,最后的底線是公式法~當(dāng)然每個(gè)人的習(xí)慣不一樣,熟悉的方法也不一樣,同學(xué)們可以自行選擇萬無一失的方法,像老師不到萬不得已絕對不用公式法,哈哈哈哈~好啦,上完這一個(gè)復(fù)習(xí)課希望大家都能有收獲!

元二次方程的應(yīng)用篇七

12.6一元二次方程的應(yīng)用(三)

一、素質(zhì)教育目標(biāo)

(一)知識(shí)教學(xué)點(diǎn):使學(xué)生會(huì)用列一元二次方程的方法解決有關(guān)增長率問題。

(二)能力訓(xùn)練點(diǎn):進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問題為數(shù)學(xué)問題的能力和分析問題解決問題的能力,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)。

二、教學(xué)重點(diǎn)、難點(diǎn)

1.教學(xué)重點(diǎn):學(xué)會(huì)用列方程的方法解決有關(guān)增長率問題。

2.教學(xué)難點(diǎn):有關(guān)增長率之間的數(shù)量關(guān)系。下列詞語的異同;增長,增長了,增長到;擴(kuò)大,擴(kuò)大到,擴(kuò)大了。

三、教學(xué)步驟

(一)明確目標(biāo)。

(二)整體感知

(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過程

1.復(fù)習(xí)提問

(1)原產(chǎn)量+增產(chǎn)量=實(shí)際產(chǎn)量。

(2)單位時(shí)間增產(chǎn)量=原產(chǎn)量增長率。

(3)實(shí)際產(chǎn)量=原產(chǎn)量(1+增長率).

2.例1某鋼鐵廠去年一月份某種鋼的產(chǎn)量為5000噸,三月份上升到7200噸,這兩個(gè)月平均每月增長的百分率是多少?

分析:設(shè)平均每月的增長率為x.

則2月份的產(chǎn)量是5000+5000x=5000(1+x)(噸).

3月份的產(chǎn)量是[5000(1+x)+5000(1+x)x]

=5000(1+x)2(噸).

解:設(shè)平均每月的增長率為x,據(jù)題意得:

5000(1+x)2=7200

(1+x)2=1.44

1+x=1.2.

x1=0.2,x2=-2.2(不合題意,舍去).

取x=0.2=20%.

教師引導(dǎo),點(diǎn)撥、板書,學(xué)生回答。

注意以下幾個(gè)問題:

(1)為計(jì)算簡便、直接求得,可以直接設(shè)增長的百分率為x.

(2)認(rèn)真審題,弄清基數(shù),增長了,增長到等詞語的關(guān)系。

(3)用直接開平方法做簡單,不要將括號(hào)打開。

練習(xí)1.教材P.42中5.

學(xué)生分析題意,板書,筆答,評價(jià)。

練習(xí)2.若設(shè)每年平均增長的百分?jǐn)?shù)為x,分別列出下面幾個(gè)問題的方程。

(1)某工廠用二年時(shí)間把總產(chǎn)值增加到原來的b倍,求每年平均增長的百分率。

(1+x)2=b(把原來的總產(chǎn)值看作是1.)

(2)某工廠用兩年時(shí)間把總產(chǎn)值由a萬元增加到b萬元,求每年平均增長的百分?jǐn)?shù)。

(a(1+x)2=b)

(3)某工廠用兩年時(shí)間把總產(chǎn)值增加了原來的b倍,求每年增長的百分?jǐn)?shù)。

((1+x)2=b+1把原來的總產(chǎn)值看作是1.)

以上學(xué)生回答,教師點(diǎn)撥。引導(dǎo)學(xué)生總結(jié)下面的規(guī)律:

設(shè)某產(chǎn)量原來的產(chǎn)值是a,平均每次增長的百分率為x,則增長一次后的產(chǎn)值為a(1+x),增長兩次后的產(chǎn)值為a(1+x)2,…………增長n次后的產(chǎn)值為S=a(1+x)n.

規(guī)律的得出,使學(xué)生對此類問題能居高臨下,同時(shí)培養(yǎng)學(xué)生的探索精神和創(chuàng)造能力。

例2某產(chǎn)品原來每件600元,由于連續(xù)兩次降價(jià),現(xiàn)價(jià)為384元,如果兩個(gè)降價(jià)的百分?jǐn)?shù)相同,求每次降價(jià)百分之幾?

分析:設(shè)每次降價(jià)為x.

第一次降價(jià)后,每件為600-600x=600(1-x)(元).

第二次降價(jià)后,每件為600(1-x)-6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論