版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省臨沂市2023年初三下學(xué)期數(shù)學(xué)試題周測題三考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知二次函數(shù)(為常數(shù)),當(dāng)自變量的值滿足時,與其對應(yīng)的函數(shù)值的最小值為4,則的值為()A.1或5 B.或3 C.或1 D.或52.如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點G,若AE=3ED,DF=CF,則的值是A. B. C. D.3.下列計算正確的是()A.2x+3x=5x B.2x?3x=6x C.(x3)2=5 D.x3﹣x2=x4.如圖,直線a、b被c所截,若a∥b,∠1=45°,∠2=65°,則∠3的度數(shù)為()A.110° B.115° C.120° D.130°5.計算(—2)2-3的值是()A、1B、2C、—1D、—26.下列運(yùn)算中正確的是()A.x2÷x8=x?6 B.a(chǎn)·a2=a2 C.(a2)3=a5 D.(3a)3=9a37.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD8.如圖:A、B、C、D四點在一條直線上,若AB=CD,下列各式表示線段AC錯誤的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB9.如果將拋物線y=x2向右平移1個單位,那么所得的拋物線的表達(dá)式是(A.y=x2+1 B.y=x10.如圖,釣魚竿AC長6m,露在水面上的魚線BC長m,某釣者想看看魚釣上的情況,把魚竿AC轉(zhuǎn)動到AC'的位置,此時露在水面上的魚線B′C′為m,則魚竿轉(zhuǎn)過的角度是()A.60° B.45° C.15° D.90°二、填空題(共7小題,每小題3分,滿分21分)11.圓錐的底面半徑為4cm,高為5cm,則它的表面積為______cm1.12.已知一紙箱中,裝有5個只有顏色不同的球,其中2個白球,3個紅球,若往原紙箱中再放入x個白球,然后從箱中隨機(jī)取出一個白球的概率是2313.如圖所示,輪船在處觀測燈塔位于北偏西方向上,輪船從處以每小時海里的速度沿南偏西方向勻速航行,小時后到達(dá)碼頭處,此時,觀測燈塔位于北偏西方向上,則燈塔與碼頭的距離是______海里(結(jié)果精確到個位,參考數(shù)據(jù):,,)14.如圖,半圓O的直徑AB=7,兩弦AC、BD相交于點E,弦CD=,且BD=5,則DE=_____.15.若一個圓錐的底面圓的周長是cm,母線長是,則該圓錐的側(cè)面展開圖的圓心角度數(shù)是_____.16.分解因式:4x2﹣36=___________.17.如圖(a),有一張矩形紙片ABCD,其中AD=6cm,以AD為直徑的半圓,正好與對邊BC相切,將矩形紙片ABCD沿DE折疊,使點A落在BC上,如圖(b).則半圓還露在外面的部分(陰影部分)的面積為_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標(biāo)為(4,0).(1)求拋物線的解析式;(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標(biāo).19.(5分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?20.(8分)如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)的圖象交于點A(-1,2),B(m,-1).(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)在x軸上是否存在點P(n,0),使△ABP為等腰三角形,請你直接寫出P點的坐標(biāo).21.(10分)如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.(1)求證:CF是⊙O的切線;(2)若∠F=30°,EB=6,求圖中陰影部分的面積.(結(jié)果保留根號和π)22.(10分)如圖山坡上有一根旗桿AB,旗桿底部B點到山腳C點的距離BC為米,斜坡BC的坡度i=1:.小明在山腳的平地F處測量旗桿的高,點C到測角儀EF的水平距離CF=1米,從E處測得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°.(1)求坡角∠BCD;(2)求旗桿AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)23.(12分)先化簡,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.24.(14分)計算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
由解析式可知該函數(shù)在時取得最小值0,拋物線開口向上,當(dāng)時,y隨x的增大而增大;當(dāng)時,y隨x的增大而減小;根據(jù)時,函數(shù)的最小值為4可分如下三種情況:①若,時,y取得最小值4;②若-1<h<3時,當(dāng)x=h時,y取得最小值為0,不是4;③若,當(dāng)x=3時,y取得最小值4,分別列出關(guān)于h的方程求解即可.【詳解】解:∵當(dāng)x>h時,y隨x的增大而增大,當(dāng)時,y隨x的增大而減小,并且拋物線開口向上,
∴①若,當(dāng)時,y取得最小值4,
可得:4,
解得或(舍去);
②若-1<h<3時,當(dāng)x=h時,y取得最小值為0,不是4,
∴此種情況不符合題意,舍去;
③若-1≤x≤3<h,當(dāng)x=3時,y取得最小值4,
可得:,
解得:h=5或h=1(舍).
綜上所述,h的值為-3或5,
故選:D.【點睛】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值分類討論是解題的關(guān)鍵.2、C【解析】
如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.設(shè)DE=a,則AE=3a,利用平行線分線段成比例定理解決問題即可.【詳解】如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.∵四邊形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四邊形ANFD是平行四邊形,∵∠D=90°,∴四邊形ANFD是矩形,∵AE=3DE,設(shè)DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故選C.【點睛】本題考查正方形的性質(zhì)、平行線分線段成比例定理、三角形中位線定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造平行線解決問題,學(xué)會利用參數(shù)解決問題,屬于中考??碱}型.3、A【解析】
依據(jù)合并同類項法則、單項式乘單項式法則、積的乘方法則進(jìn)行判斷即可.【詳解】A、2x+3x=5x,故A正確;B、2x?3x=6x2,故B錯誤;C、(x3)2=x6,故C錯誤;D、x3與x2不是同類項,不能合并,故D錯誤.故選A.【點睛】本題主要考查的是整式的運(yùn)算,熟練掌握相關(guān)法則是解題的關(guān)鍵.4、A【解析】試題分析:首先根據(jù)三角形的外角性質(zhì)得到∠1+∠2=∠4,然后根據(jù)平行線的性質(zhì)得到∠3=∠4求解.解:根據(jù)三角形的外角性質(zhì),∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故選A.點評:本題考查了平行線的性質(zhì)以及三角形的外角性質(zhì),屬于基礎(chǔ)題,難度較?。?、A【解析】本題考查的是有理數(shù)的混合運(yùn)算根據(jù)有理數(shù)的加法、乘方法則,先算乘方,再算加法,即得結(jié)果。解答本題的關(guān)鍵是掌握好有理數(shù)的加法、乘方法則。6、A【解析】
根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘;積的乘方法則:把每一個因式分別乘方,再把所得的冪相乘進(jìn)行計算即可.【詳解】解:A、x2÷x8=x-6,故該選項正確;
B、a?a2=a3,故該選項錯誤;
C、(a2)3=a6,故該選項錯誤;
D、(3a)3=27a3,故該選項錯誤;
故選A.【點睛】此題主要考查了同底數(shù)冪的乘除法、冪的乘方和積的乘方,關(guān)鍵是掌握相關(guān)運(yùn)算法則.7、D【解析】
解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對應(yīng)夾角,故D選項錯誤,故選:D.考點:1.圓周角定理2.相似三角形的判定8、C【解析】
根據(jù)線段上的等量關(guān)系逐一判斷即可.【詳解】A、∵AD-CD=AC,∴此選項表示正確;B、∵AB+BC=AC,∴此選項表示正確;C、∵AB=CD,∴BD-AB=BD-CD,∴此選項表示不正確;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此選項表示正確.故答案選:C.【點睛】本題考查了線段上兩點間的距離及線段的和、差的知識,解題的關(guān)鍵是找出各線段間的關(guān)系.9、D【解析】
本題主要考查二次函數(shù)的解析式【詳解】解:根據(jù)二次函數(shù)的解析式形式可得,設(shè)頂點坐標(biāo)為(h,k),則二次函數(shù)的解析式為y=a(x-故選D.【點睛】本題主要考查二次函數(shù)的頂點式,根據(jù)頂點的平移可得到二次函數(shù)平移后的解析式.10、C【解析】試題解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,魚竿轉(zhuǎn)過的角度是15°.故選C.考點:解直角三角形的應(yīng)用.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
利用勾股定理求得圓錐的母線長,則圓錐表面積=底面積+側(cè)面積=π×底面半徑的平方+底面周長×母線長÷1.【詳解】底面半徑為4cm,則底面周長=8πcm,底面面積=16πcm1;由勾股定理得,母線長=,圓錐的側(cè)面面積,∴它的表面積=(16π+4)cm1=cm1,故答案為:.【點睛】本題考查了有關(guān)扇形和圓錐的相關(guān)計算.解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應(yīng)關(guān)系:(1)圓錐的母線長等于側(cè)面展開圖的扇形半徑;(1)圓錐的底面周長等于側(cè)面展開圖的扇形弧長.正確對這兩個關(guān)系的記憶是解題的關(guān)鍵.12、1.【解析】
先根據(jù)概率公式得到2+x5+x=2【詳解】根據(jù)題意得2+x5+x解得x=4.故答案為:4.【點睛】本題考查了概率公式:隨機(jī)事件A的概率PA=事件13、1【解析】
作BD⊥AC于點D,在直角△ABD中,利用三角函數(shù)求得BD的長,然后在直角△BCD中,利用三角函數(shù)即可求得BC的長.【詳解】∠CBA=25°+50°=75°,作BD⊥AC于點D,則∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°,在直角△ABD中,BD=AB?sin∠CAB=20×sin60°=20×=10,在直角△BCD中,∠CBD=45°,則BC=BD=10×=10≈10×2.4=1(海里),故答案是:1.【點睛】本題考查了解直角三角形的應(yīng)用——方向角問題,正確求得∠CBD以及∠CAB的度數(shù)是解決本題的關(guān)鍵.14、.【解析】
連接OD,OC,AD,由⊙O的直徑AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根據(jù)勾股定理可求出AD的長,在Rt△ADE中,利用∠DAC的正切值求解即可.【詳解】解:連接OD,OC,AD,∵半圓O的直徑AB=7,∴OD=OC=,∵CD=,∴OD=CD=OC∴∠DOC=60°,∠DAC=30°又∵AB=7,BD=5,∴在Rt△ADE中,∵∠DAC=30°,∴DE=AD?tan30°故答案為【點睛】本題考查了圓周角定理、等邊三角形的判定與性質(zhì),勾股定理的應(yīng)用等知識;綜合性比較強(qiáng).15、【解析】
利用圓錐的底面周長和母線長求得圓錐的側(cè)面積,然后再利用圓錐的面積的計算方法求得側(cè)面展開扇形的圓心角的度數(shù)即可【詳解】∵圓錐的底面圓的周長是,∴圓錐的側(cè)面扇形的弧長為cm,,解得:故答案為.【點睛】此題考查弧長的計算,解題關(guān)鍵在于求得圓錐的側(cè)面積16、4(x+3)(x﹣3)【解析】分析:首先提取公因式4,然后再利用平方差公式進(jìn)行因式分解.詳解:原式=.點睛:本題主要考查的是因式分解,屬于基礎(chǔ)題型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.17、【解析】
解:如圖,作OH⊥DK于H,連接OK,∵以AD為直徑的半圓,正好與對邊BC相切,∴AD=2CD.∴根據(jù)折疊對稱的性質(zhì),A'D=2CD.∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.∴∠DOK=120°.∴扇形ODK的面積為.∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.∴△ODK的面積為.∴半圓還露在外面的部分(陰影部分)的面積是:.故答案為:.三、解答題(共7小題,滿分69分)18、(1);(2)(,0);(3)1,M(2,﹣3).【解析】試題分析:方法一:(1)該函數(shù)解析式只有一個待定系數(shù),只需將B點坐標(biāo)代入解析式中即可.(2)首先根據(jù)拋物線的解析式確定A點坐標(biāo),然后通過證明△ABC是直角三角形來推導(dǎo)出直徑AB和圓心的位置,由此確定圓心坐標(biāo).(3)△MBC的面積可由S△MBC=BC×h表示,若要它的面積最大,需要使h取最大值,即點M到直線BC的距離最大,若設(shè)一條平行于BC的直線,那么當(dāng)該直線與拋物線有且只有一個交點時,該交點就是點M.方法二:(1)該函數(shù)解析式只有一個待定系數(shù),只需將B點坐標(biāo)代入解析式中即可.(2)通過求出A,B,C三點坐標(biāo),利用勾股定理或利用斜率垂直公式可求出AC⊥BC,從而求出圓心坐標(biāo).(3)利用三角形面積公式,過M點作x軸垂線,水平底與鉛垂高乘積的一半,得出△MBC的面積函數(shù),從而求出M點.試題解析:解:方法一:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)由(1)的函數(shù)解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=1,即:OC2=OA?OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC為直角三角形,AB為△ABC外接圓的直徑;所以該外接圓的圓心為AB的中點,且坐標(biāo)為:(,0).(3)已求得:B(1,0)、C(0,﹣2),可得直線BC的解析式為:y=x﹣2;設(shè)直線l∥BC,則該直線的解析式可表示為:y=x+b,當(dāng)直線l與拋物線只有一個交點時,可列方程:x+b=,即:,且△=0;∴1﹣1×(﹣2﹣b)=0,即b=﹣1;∴直線l:y=x﹣1.所以點M即直線l和拋物線的唯一交點,有:,解得:即M(2,﹣3).過M點作MN⊥x軸于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×1=1.方法二:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)∵y=(x﹣1)(x+1),∴A(﹣1,0),B(1,0).C(0,﹣2),∴KAC==﹣2,KBC==,∴KAC×KBC=﹣1,∴AC⊥BC,∴△ABC是以AB為斜邊的直角三角形,△ABC的外接圓的圓心是AB的中點,△ABC的外接圓的圓心坐標(biāo)為(,0).(3)過點M作x軸的垂線交BC′于H,∵B(1,0),C(0,﹣2),∴l(xiāng)BC:y=x﹣2,設(shè)H(t,t﹣2),M(t,),∴S△MBC=×(HY﹣MY)(BX﹣CX)=×(t﹣2﹣)(1﹣0)=﹣t2+1t,∴當(dāng)t=2時,S有最大值1,∴M(2,﹣3).點睛:考查了二次函數(shù)綜合題,該題的難度不算太大,但用到的瑣碎知識點較多,綜合性很強(qiáng).熟練掌握直角三角形的相關(guān)性質(zhì)以及三角形的面積公式是理出思路的關(guān)鍵.19、1千米/時【解析】
設(shè)水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據(jù)由貨輪往返兩個碼頭之間,可知順?biāo)叫械木嚯x與逆水航行的距離相等列出方程,解方程即可求解.【詳解】設(shè)水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據(jù)題意得:6(20﹣x)=1(20+x),解得:x=1.答:水流的速度是1千米/時.【點睛】本題考查了一元一次方程的應(yīng)用,讀懂題意,找出等量關(guān)系,設(shè)出未知數(shù)后列出方程是解決此類題目的基本思路.20、(1)反比例函數(shù)的解析式為;一次函數(shù)的解析式為y=-x+1;(2)滿足條件的P點的坐標(biāo)為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】
(1)將A點代入求出k2,從而求出反比例函數(shù)方程,再聯(lián)立將B點代入即可求出一次函數(shù)方程.(2)令PA=PB,求出P.令A(yù)P=AB,求P.令BP=BA,求P.根據(jù)坐標(biāo)距離公式計算即可.【詳解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函數(shù)的解析式為.∵B(m,-1)在上,∴m=2,由題意,解得:,∴一次函數(shù)的解析式為y=-x+1.(2)滿足條件的P點的坐標(biāo)為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【點睛】本題考查一次函數(shù)圖像與性質(zhì)和反比例函數(shù)的圖像和性質(zhì),解題的關(guān)鍵是待定系數(shù)法,分三種情況討論.21、(1)證明見解析;(2)93﹣3π【解析】試題分析:(1)、連接OD,根據(jù)平行四邊形的性質(zhì)得出∠AOC=∠OBE,∠COD=∠ODB,結(jié)合OB=OD得出∠DOC=∠AOC,從而證明出△COD和△COA全等,從而的得出答案;(2)、首先根據(jù)題意得出△OBD為等邊三角形,根據(jù)等邊三角形的性質(zhì)得出EC=ED=BO=DB,根據(jù)Rt△AOC的勾股定理得出AC的長度,然后根據(jù)陰影部分的面積等于兩個△AOC的面積減去扇形OAD的面積得出答案.試題解析:(1)如圖連接OD.∵四邊形OBEC是平行四邊形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 糖尿病藥物聯(lián)合用藥
- 確保安全駕駛常規(guī)的關(guān)鍵要點
- 徐濤課件教學(xué)課件
- 3.1.1亞鐵鹽和鐵鹽課件高一上學(xué)期化學(xué)魯科版(2019)必修第一冊
- DB1304T 481-2024芝麻輕簡化栽培技術(shù)規(guī)程
- 初中七年級家長會教案
- 級中 國美食說課稿
- 壺口瀑布說課稿
- 海洋與生命說課稿
- 格林巴利綜合征治療指南
- 21 小圣施威降大圣 公開課一等獎創(chuàng)新教案
- 《城市軌道交通橋梁養(yǎng)護(hù)技術(shù)規(guī)范》
- 辦理電信業(yè)務(wù)的委托書
- 《水土保持技術(shù)》課件-項目八 攔渣措施
- 機(jī)動車檢測站違規(guī)檢驗整改報告
- 2024年建筑電工復(fù)審考試題庫附答案
- 2024年4月自考04737C++程序設(shè)計試題及答案含評分參考
- 睡眠醫(yī)學(xué)智慧樹知到期末考試答案章節(jié)答案2024年廣州醫(yī)科大學(xué)
- GB/T 17259-2024機(jī)動車用液化石油氣鋼瓶
- 國開(河北)2024年《中外政治思想史》形成性考核1-4答案
- 床邊護(hù)理帶教體會
評論
0/150
提交評論