版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.在平面直角坐標(biāo)系xOy中,若點(diǎn)P(3,4)在⊙O內(nèi),則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>52.如圖,在△ABC中,AB=AC,點(diǎn)D是邊AC上一點(diǎn),BC=BD=AD,則∠A的大小是().A.36° B.54° C.72° D.30°3.如圖,?ABCD對(duì)角線AC與BD交于點(diǎn)O,且AD=3,AB=5,在AB延長(zhǎng)線上取一點(diǎn)E,使BE=AB,連接OE交BC于F,則BF的長(zhǎng)為()A. B. C. D.14.下列命題中錯(cuò)誤的有()個(gè)(1)等腰三角形的兩個(gè)底角相等(2)對(duì)角線相等且互相垂直的四邊形是正方形(3)對(duì)角線相等的四邊形為矩形(4)圓的切線垂直于半徑(5)平分弦的直徑垂直于弦A.1B.2C.3D.45.在一組數(shù)據(jù):1,2,4,5中加入一個(gè)新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說(shuō)法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小6.定義:如果一元二次方程ax2+bx+c=0(a≠0)滿足a+b+c=0,那么我們稱這個(gè)方程為“和諧”方程;如果一元二次方程ax2+bx+c=0(a≠0)滿足a﹣b+c=0那么我們稱這個(gè)方程為“美好”方程,如果一個(gè)一元二次方程既是“和諧”方程又是“美好”方程,則下列結(jié)論正確的是()A.方有兩個(gè)相等的實(shí)數(shù)根 B.方程有一根等于0C.方程兩根之和等于0 D.方程兩根之積等于07.將(x+3)2﹣(x﹣1)2分解因式的結(jié)果是()A.4(2x+2) B.8x+8 C.8(x+1) D.4(x+1)8.下列圖形中,不是中心對(duì)稱圖形的是()A.平行四邊形 B.圓 C.等邊三角形 D.正六邊形9.二次函數(shù)y=﹣(x﹣1)2+5,當(dāng)m≤x≤n且mn<0時(shí),y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.10.已知二次函數(shù)(為常數(shù)),當(dāng)自變量的值滿足時(shí),與其對(duì)應(yīng)的函數(shù)值的最小值為4,則的值為()A.1或5 B.或3 C.或1 D.或511.下列關(guān)于事件發(fā)生可能性的表述,正確的是()A.事件:“在地面,向上拋石子后落在地上”,該事件是隨機(jī)事件B.體育彩票的中獎(jiǎng)率為10%,則買100張彩票必有10張中獎(jiǎng)C.在同批次10000件產(chǎn)品中抽取100件發(fā)現(xiàn)有5件次品,則這批產(chǎn)品中大約有500件左右的次品D.?dāng)S兩枚硬幣,朝上的一面是一正面一反面的概率為12.已知,兩數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)如圖所示,下列結(jié)論正確的是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點(diǎn),那么當(dāng)y1>y2時(shí),x的取值范圍是_____.14.如圖,直線交于點(diǎn),,與軸負(fù)半軸,軸正半軸分別交于點(diǎn),,,的延長(zhǎng)線相交于點(diǎn),則的值是_________.15.如圖,四邊形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.則=16.如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)D在圓O上,BD=CD,AB=10,AC=6,連接OD交BC于點(diǎn)E,DE=______.17.的相反數(shù)是______,的倒數(shù)是______.18.如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交AC于E,交BC的延長(zhǎng)線于F,若∠F=30°,DE=1,則BE的長(zhǎng)是.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,將連續(xù)的奇數(shù)1,3,5,7…按如圖中的方式排成一個(gè)數(shù),用一個(gè)十字框框住5個(gè)數(shù),這樣框出的任意5個(gè)數(shù)中,四個(gè)分支上的數(shù)分別用a,b,c,d表示,如圖所示.(1)計(jì)算:若十字框的中間數(shù)為17,則a+b+c+d=______.(2)發(fā)現(xiàn):移動(dòng)十字框,比較a+b+c+d與中間的數(shù).猜想:十字框中a、b、c、d的和是中間的數(shù)的______;(3)驗(yàn)證:設(shè)中間的數(shù)為x,寫出a、b、c、d的和,驗(yàn)證猜想的正確性;(4)應(yīng)用:設(shè)M=a+b+c+d+x,判斷M的值能否等于2020,請(qǐng)說(shuō)明理由.20.(6分)水龍頭關(guān)閉不緊會(huì)造成滴水,小明用可以顯示水量的容器做圖①所示的試驗(yàn),并根據(jù)試驗(yàn)數(shù)據(jù)繪制出圖②所示的容器內(nèi)盛水量W(L)與滴水時(shí)間t(h)的函數(shù)關(guān)系圖象,請(qǐng)結(jié)合圖象解答下列問(wèn)題:容器內(nèi)原有水多少?求W與t之間的函數(shù)關(guān)系式,并計(jì)算在這種滴水狀態(tài)下一天的滴水量是多少升?圖①圖②21.(6分)為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬(wàn)元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬(wàn)元,乙種套房費(fèi)用為700萬(wàn)元.(1)甲、乙兩種套房每套提升費(fèi)用各多少萬(wàn)元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬(wàn)元,但不超過(guò)2096萬(wàn)元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?22.(8分)如圖,二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為,另一個(gè)交點(diǎn)為A,且與y軸相交于C點(diǎn)求m的值及C點(diǎn)坐標(biāo);在直線BC上方的拋物線上是否存在一點(diǎn)M,使得它與B,C兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時(shí)M點(diǎn)坐標(biāo);若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由為拋物線上一點(diǎn),它關(guān)于直線BC的對(duì)稱點(diǎn)為Q當(dāng)四邊形PBQC為菱形時(shí),求點(diǎn)P的坐標(biāo);點(diǎn)P的橫坐標(biāo)為,當(dāng)t為何值時(shí),四邊形PBQC的面積最大,請(qǐng)說(shuō)明理由.23.(8分)濟(jì)南某中學(xué)在參加“創(chuàng)文明城,點(diǎn)贊泉城”書畫比賽中,楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班(用A,B,C,D表示),對(duì)征集到的作鼎的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息,回答下列問(wèn)題:(l)楊老師采用的調(diào)查方式是______(填“普查”或“抽樣調(diào)查”);(2)請(qǐng)補(bǔ)充完整條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中C班作品數(shù)量所對(duì)應(yīng)的圓心角度數(shù)______.(3)請(qǐng)估計(jì)全校共征集作品的件數(shù).(4)如果全枝征集的作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎(jiǎng)的作者中選取兩人參加表彰座談會(huì),請(qǐng)你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.24.(10分)在直角坐標(biāo)系中,過(guò)原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點(diǎn)D為OB的中點(diǎn),點(diǎn)E是線段AB上的動(dòng)點(diǎn),連結(jié)DE,作DF⊥DE,交OA于點(diǎn)F,連結(jié)EF.已知點(diǎn)E從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.如圖1,當(dāng)t=3時(shí),求DF的長(zhǎng).如圖2,當(dāng)點(diǎn)E在線段AB上移動(dòng)的過(guò)程中,∠DEF的大小是否發(fā)生變化?如果變化,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)求出tan∠DEF的值.連結(jié)AD,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時(shí),求相應(yīng)的t的值.25.(10分)計(jì)算:;解方程:26.(12分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點(diǎn),連接BE.(1)如圖1,若∠ABE=15°,O為BE中點(diǎn),連接AO,且AO=1,求BC的長(zhǎng);(2)如圖2,D為AB上一點(diǎn),且滿足AE=AD,過(guò)點(diǎn)A作AF⊥BE交BC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥CD交BE的延長(zhǎng)線于點(diǎn)G,交AC于點(diǎn)M,求證:BG=AF+FG.27.(12分)我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:(1)接受問(wèn)卷調(diào)查的學(xué)生共有______人,扇形統(tǒng)計(jì)圖中“了解”部分所對(duì)應(yīng)扇形的圓心角為______°.(2)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為_______人.(3)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的3個(gè)女生A、B、C和2個(gè)男生M、N中分別隨機(jī)抽取1人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到女生A的概率.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
先利用勾股定理計(jì)算出OP=1,然后根據(jù)點(diǎn)與圓的位置關(guān)系的判定方法得到r的范圍.【詳解】∵點(diǎn)P的坐標(biāo)為(3,4),∴OP1.∵點(diǎn)P(3,4)在⊙O內(nèi),∴OP<r,即r>1.故選D.【點(diǎn)睛】本題考查了點(diǎn)與圓的位置關(guān)系:點(diǎn)的位置可以確定該點(diǎn)到圓心距離與半徑的關(guān)系,反過(guò)來(lái)已知點(diǎn)到圓心距離與半徑的關(guān)系可以確定該點(diǎn)與圓的位置關(guān)系.2、A【解析】
由BD=BC=AD可知,△ABD,△BCD為等腰三角形,設(shè)∠A=∠ABD=x,則∠C=∠CDB=2x,又由AB=AC可知,△ABC為等腰三角形,則∠ABC=∠C=2x.在△ABC中,用內(nèi)角和定理列方程求解.【詳解】解:∵BD=BC=AD,∴△ABD,△BCD為等腰三角形,設(shè)∠A=∠ABD=x,則∠C=∠CDB=2x.又∵AB=AC,∴△ABC為等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故選A.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì).關(guān)鍵是利用等腰三角形的底角相等,外角的性質(zhì),內(nèi)角和定理,列方程求解.3、A【解析】
首先作輔助線:取AB的中點(diǎn)M,連接OM,由平行四邊形的性質(zhì)與三角形中位線的性質(zhì),即可求得:△EFB∽△EOM與OM的值,利用相似三角形的對(duì)應(yīng)邊成比例即可求得BF的值.【詳解】取AB的中點(diǎn)M,連接OM,∵四邊形ABCD是平行四邊形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=×3=,∴△EFB∽△EOM,∴,∵AB=5,BE=AB,∴BE=2,BM=,∴EM=+2=,∴,∴BF=,故選A.【點(diǎn)睛】此題考查了平行四邊形的性質(zhì)、相似三角形的判定與性質(zhì)等知識(shí).解此題的關(guān)鍵是準(zhǔn)確作出輔助線,合理應(yīng)用數(shù)形結(jié)合思想解題.4、D【解析】分析:根據(jù)等腰三角形的性質(zhì)、正方形的判定定理、矩形的判定定理、切線的性質(zhì)、垂徑定理判斷即可.詳解:等腰三角形的兩個(gè)底角相等,(1)正確;對(duì)角線相等、互相平分且互相垂直的四邊形是正方形,(2)錯(cuò)誤;對(duì)角線相等的平行四邊形為矩形,(3)錯(cuò)誤;圓的切線垂直于過(guò)切點(diǎn)的半徑,(4)錯(cuò)誤;平分弦(不是直徑)的直徑垂直于弦,(5)錯(cuò)誤.故選D.點(diǎn)睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯(cuò)誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.5、D【解析】
根據(jù)中位數(shù)和方差的定義分別計(jì)算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,
∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;
∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點(diǎn)睛】本題考查了中位數(shù)和方差,解題的關(guān)鍵是掌握中位數(shù)和方差的定義.6、C【解析】試題分析:根據(jù)已知得出方程ax2+bx+c=0(a≠0)有兩個(gè)根x=1和x=﹣1,再判斷即可.解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,∴方程ax2+bx+c=0(a≠0)有兩個(gè)根x=1和x=﹣1,∴1+(﹣1)=0,即只有選項(xiàng)C正確;選項(xiàng)A、B、D都錯(cuò)誤;故選C.7、C【解析】
直接利用平方差公式分解因式即可.【詳解】(x+3)2?(x?1)2=[(x+3)+(x?1)][(x+3)?(x?1)]=4(2x+2)=8(x+1).故選C.【點(diǎn)睛】此題主要考查了公式法分解因式,正確應(yīng)用平方差公式是解題關(guān)鍵.8、C【解析】
根據(jù)中心對(duì)稱圖形的定義依次判斷各項(xiàng)即可解答.【詳解】選項(xiàng)A、平行四邊形是中心對(duì)稱圖形;選項(xiàng)B、圓是中心對(duì)稱圖形;選項(xiàng)C、等邊三角形不是中心對(duì)稱圖形;選項(xiàng)D、正六邊形是中心對(duì)稱圖形;故選C.【點(diǎn)睛】本題考查了中心對(duì)稱圖形的判定,熟知中心對(duì)稱圖形的定義是解決問(wèn)題的關(guān)鍵.9、D【解析】
由m≤x≤n和mn<0知m<0,n>0,據(jù)此得最小值為1m為負(fù)數(shù),最大值為1n為正數(shù).將最大值為1n分兩種情況,①頂點(diǎn)縱坐標(biāo)取到最大值,結(jié)合圖象最小值只能由x=m時(shí)求出.②頂點(diǎn)縱坐標(biāo)取不到最大值,結(jié)合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數(shù)y=﹣(x﹣1)1+5的大致圖象如下:.①當(dāng)m≤0≤x≤n<1時(shí),當(dāng)x=m時(shí)y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當(dāng)x=n時(shí)y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當(dāng)m≤0≤x≤1≤n時(shí),當(dāng)x=m時(shí)y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當(dāng)x=1時(shí)y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時(shí)y取最小值,x=1時(shí)y取最大值,
1m=-(n-1)1+5,n=,∴m=,
∵m<0,
∴此種情形不合題意,所以m+n=﹣1+=.10、D【解析】
由解析式可知該函數(shù)在時(shí)取得最小值0,拋物線開口向上,當(dāng)時(shí),y隨x的增大而增大;當(dāng)時(shí),y隨x的增大而減??;根據(jù)時(shí),函數(shù)的最小值為4可分如下三種情況:①若,時(shí),y取得最小值4;②若-1<h<3時(shí),當(dāng)x=h時(shí),y取得最小值為0,不是4;③若,當(dāng)x=3時(shí),y取得最小值4,分別列出關(guān)于h的方程求解即可.【詳解】解:∵當(dāng)x>h時(shí),y隨x的增大而增大,當(dāng)時(shí),y隨x的增大而減小,并且拋物線開口向上,
∴①若,當(dāng)時(shí),y取得最小值4,
可得:4,
解得或(舍去);
②若-1<h<3時(shí),當(dāng)x=h時(shí),y取得最小值為0,不是4,
∴此種情況不符合題意,舍去;
③若-1≤x≤3<h,當(dāng)x=3時(shí),y取得最小值4,
可得:,
解得:h=5或h=1(舍).
綜上所述,h的值為-3或5,
故選:D.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值分類討論是解題的關(guān)鍵.11、C【解析】
根據(jù)隨機(jī)事件,必然事件的定義以及概率的意義對(duì)各個(gè)小題進(jìn)行判斷即可.【詳解】解:A.事件:“在地面,向上拋石子后落在地上”,該事件是必然事件,故錯(cuò)誤.B.體育彩票的中獎(jiǎng)率為10%,則買100張彩票可能有10張中獎(jiǎng),故錯(cuò)誤.C.在同批次10000件產(chǎn)品中抽取100件發(fā)現(xiàn)有5件次品,則這批產(chǎn)品中大約有500件左右的次品,正確.D.擲兩枚硬幣,朝上的一面是一正面一反面的概率為,故錯(cuò)誤.故選:C.【點(diǎn)睛】考查必然事件,隨機(jī)事件的定義以及概率的意義,概率=所求情況數(shù)與總情況數(shù)之比.12、C【解析】
根據(jù)各點(diǎn)在數(shù)軸上位置即可得出結(jié)論.【詳解】由圖可知,b<a<0,A.
∵b<a<0,∴a+b<0,故本選項(xiàng)錯(cuò)誤;B.
∵b<a<0,∴ab>0,故本選項(xiàng)錯(cuò)誤;C.
∵b<a<0,∴a>b,故本選項(xiàng)正確;D.
∵b<a<0,∴b?a<0,故本選項(xiàng)錯(cuò)誤.故選C.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、﹣1<x<2【解析】
根據(jù)圖象得出取值范圍即可.【詳解】解:因?yàn)橹本€y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點(diǎn),所以當(dāng)y1>y2時(shí),﹣1<x<2,故答案為﹣1<x<2【點(diǎn)睛】此題考查二次函數(shù)與不等式,關(guān)鍵是根據(jù)圖象得出取值范圍.14、【解析】
連接,根據(jù)可得,并且根據(jù)圓的半徑相等可得△OAD、△OBE都是等腰三角形,由三角形的內(nèi)角和,可得∠C=45°,則有是等腰直角三角形,可得即可求求解.【詳解】解:如圖示,連接,∵,∴,∵,,∴,,∴,∴,∵是直徑,∴,∴是等腰直角三角形,∴.【點(diǎn)睛】本題考查圓的性質(zhì)和直角三角形的性質(zhì),能夠根據(jù)圓性質(zhì)得出是等腰直角三角形是解題的關(guān)鍵.15、【解析】
連接AC,過(guò)點(diǎn)C作CE⊥AB的延長(zhǎng)線于點(diǎn)E,,如圖,先在Rt△BEC中根據(jù)含30度的直角三角形三邊的關(guān)系計(jì)算出BC、CE,判斷△AEC為等腰直角三角形,所以∠BAC=45°,AC=,利用即可求解.【詳解】連接AC,過(guò)點(diǎn)C作CE⊥AB的延長(zhǎng)線于點(diǎn)E,∵∠ABC=2∠D=120°,∴∠D=60°,∵AD=CD,∴△ADC是等邊三角形,∵∠D+∠DAB+∠ABC+∠DCB=360°,∴∠ACB=∠DCB-∠DCA=75°-60°=15°,∠BAC=180°-∠ABC-∠ACB=180°-120°-15°=45°,∴AE=CE,∠EBC=45°+15°=60°,∴∠BCE=90°-60°=30°,設(shè)BE=x,則BC=2x,CE=,在RT△AEC中,AC=,∴,故答案為.【點(diǎn)睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過(guò)程就是解直角三角形.合理作輔助線是解題的關(guān)鍵.16、1【解析】
先利用垂徑定理得到OD⊥BC,則BE=CE,再證明OE為△ABC的中位線得到,入境計(jì)算OD?OE即可.【詳解】解:∵BD=CD,∴,∴OD⊥BC,∴BE=CE,而OA=OB,∴OE為△ABC的中位線,∴,∴DE=OD-OE=5-3=1.故答案為1.【點(diǎn)睛】此題考查垂徑定理,中位線的性質(zhì),解題的關(guān)鍵在于利用中位線的性質(zhì)求解.17、2,【解析】試題分析:根據(jù)相反數(shù)和倒數(shù)的定義分別進(jìn)行求解,﹣2的相反數(shù)是2,﹣2的倒數(shù)是.考點(diǎn):倒數(shù);相反數(shù).18、2【解析】∵∠ACB=90°,F(xiàn)D⊥AB,∴∠ACB=∠FDB=90°?!摺螰=30°,∴∠A=∠F=30°(同角的余角相等)。又AB的垂直平分線DE交AC于E,∴∠EBA=∠A=30°?!郣t△DBE中,BE=2DE=2。三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)68
;(2)4倍;(3)4x,猜想正確,見解析;(4)M的值不能等于1,見解析.【解析】
(1)直接相加即得到答案;(2)根據(jù)(1)猜想a+b+c+d=4x;(3)用x表示a、b、c、d,相加后即等于4x;(4)得到方程5x=1,求出的x不符合數(shù)表里數(shù)的特征,故不能等于1.【詳解】(1)5+15+19+29=68,故答案為68;(2)根據(jù)(1)猜想a+b+c+d=4x,答案為:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x,∴猜想正確;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整個(gè)數(shù)表所有的數(shù)都為奇數(shù),故不成立,∴M的值不能等于1.【點(diǎn)睛】本題考查了一元一次方程的應(yīng)用.當(dāng)解得方程的解后,要觀察是否滿足題目和實(shí)際要求再進(jìn)行取舍.20、(1)0.3L;(2)在這種滴水狀態(tài)下一天的滴水量為9.6L.【解析】
(1)根據(jù)點(diǎn)的實(shí)際意義可得;(2)設(shè)與之間的函數(shù)關(guān)系式為,待定系數(shù)法求解可得,計(jì)算出時(shí)的值,再減去容器內(nèi)原有的水量即可.【詳解】(1)由圖象可知,容器內(nèi)原有水0.3L.(2)由圖象可知W與t之間的函數(shù)圖象經(jīng)過(guò)點(diǎn)(0,0.3),故設(shè)函數(shù)關(guān)系式為W=kt+0.3.又因?yàn)楹瘮?shù)圖象經(jīng)過(guò)點(diǎn)(1.5,0.9),代入函數(shù)關(guān)系式,得1.5k+0.3=0.9,解得k=0.4.故W與t之間的函數(shù)關(guān)系式為W=0.4t+0.3.當(dāng)t=24時(shí),W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),即在這種滴水狀態(tài)下一天的滴水量為9.6L.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用,關(guān)鍵是利用待定系數(shù)法正確求出一次函數(shù)的解析式.21、(1)甲、乙兩種套房每套提升費(fèi)用為25、1萬(wàn)元;(2)甲種套房提升2套,乙種套房提升30套時(shí),y最小值為2090萬(wàn)元.【解析】
(1)設(shè)甲種套房每套提升費(fèi)用為x萬(wàn)元,根據(jù)題意建立方程求出其解即可;(2)設(shè)甲種套房提升m套,那么乙種套房提升(80-m)套,根據(jù)條件建立不等式組求出其解就可以求出提升方案,再表示出總費(fèi)用與m之間的函數(shù)關(guān)系式,根據(jù)一次函數(shù)的性質(zhì)就可以求出結(jié)論.【詳解】(1)設(shè)乙種套房提升費(fèi)用為x萬(wàn)元,則甲種套房提升費(fèi)用為(x﹣3)萬(wàn)元,則,解得x=1.經(jīng)檢驗(yàn):x=1是分式方程的解,答:甲、乙兩種套房每套提升費(fèi)用為25、1萬(wàn)元;(2)設(shè)甲種套房提升a套,則乙種套房提升(80﹣a)套,則2090≤25a+1(80﹣a)≤2096,解得48≤a≤2.∴共3種方案,分別為:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升31套,方案三:甲種套房提升2套,乙種套房提升30套.設(shè)提升兩種套房所需要的費(fèi)用為y萬(wàn)元,則y=25a+1(80﹣a)=﹣3a+2240,∵k=﹣3,∴當(dāng)a取最大值2時(shí),即方案三:甲種套房提升2套,乙種套房提升30套時(shí),y最小值為2090萬(wàn)元.【點(diǎn)睛】本題考查了一次函數(shù)的性質(zhì)的運(yùn)用,列分式方程解實(shí)際問(wèn)題的運(yùn)用,列一元一次不等式組解實(shí)際問(wèn)題的運(yùn)用.解答時(shí)建立方程求出甲,乙兩種套房每套提升費(fèi)用是關(guān)鍵,是解答第二問(wèn)的必要過(guò)程.22、,;存在,;或;當(dāng)時(shí),.【解析】
(1)用待定系數(shù)法求出拋物線解析式;(2)先判斷出面積最大時(shí),平移直線BC的直線和拋物線只有一個(gè)交點(diǎn),從而求出點(diǎn)M坐標(biāo);(3)①先判斷出四邊形PBQC時(shí)菱形時(shí),點(diǎn)P是線段BC的垂直平分線,利用該特殊性建立方程求解;②先求出四邊形PBCQ的面積與t的函數(shù)關(guān)系式,從而確定出它的最大值.【詳解】解:(1)將B(4,0)代入,解得,m=4,∴二次函數(shù)解析式為,令x=0,得y=4,∴C(0,4);(2)存在,理由:∵B(4,0),C(0,4),∴直線BC解析式為y=﹣x+4,當(dāng)直線BC向上平移b單位后和拋物線只有一個(gè)公共點(diǎn)時(shí),△MBC面積最大,∴,∴,∴△=1﹣4b=0,∴b=4,∴,∴M(2,6);(3)①如圖,∵點(diǎn)P在拋物線上,∴設(shè)P(m,),當(dāng)四邊形PBQC是菱形時(shí),點(diǎn)P在線段BC的垂直平分線上,∵B(4,0),C(0,4),∴線段BC的垂直平分線的解析式為y=x,∴m=,∴m=,∴P(,)或P(,);②如圖,設(shè)點(diǎn)P(t,),過(guò)點(diǎn)P作y軸的平行線l,過(guò)點(diǎn)C作l的垂線,∵點(diǎn)D在直線BC上,∴D(t,﹣t+4),∵PD=﹣(﹣t+4)=,BE+CF=4,∴S四邊形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=∵0<t<4,∴當(dāng)t=2時(shí),S四邊形PBQC最大=1.考點(diǎn):二次函數(shù)綜合題;二次函數(shù)的最值;最值問(wèn)題;分類討論;壓軸題.23、(1)抽樣調(diào)查(2)150°(3)180件(4)【解析】分析:(1)楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班,屬于抽樣調(diào)查.(2)由題意得:所調(diào)查的4個(gè)班征集到的作品數(shù)為:6÷=24(件),C班作品的件數(shù)為:24-4-6-4=10(件);繼而可補(bǔ)全條形統(tǒng)計(jì)圖;(3)先求出抽取的4個(gè)班每班平均征集的數(shù)量,再乘以班級(jí)總數(shù)可得;(4)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩名學(xué)生性別相同的情況,再利用概率公式即可求得答案.詳解:(1)楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班,屬于抽樣調(diào)查.故答案為抽樣調(diào)查.(2)所調(diào)查的4個(gè)班征集到的作品數(shù)為:6÷=24件,C班有24﹣(4+6+4)=10件,補(bǔ)全條形圖如圖所示,扇形統(tǒng)計(jì)圖中C班作品數(shù)量所對(duì)應(yīng)的圓心角度數(shù)360°×=150°;故答案為150°;(3)∵平均每個(gè)班=6件,∴估計(jì)全校共征集作品6×30=180件.(4)畫樹狀圖得:∵共有20種等可能的結(jié)果,兩名學(xué)生性別相同的有8種情況,∴恰好選取的兩名學(xué)生性別相同的概率為.點(diǎn)睛:本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。瑫r(shí)古典概型求法:(1)算出所有基本事件的個(gè)數(shù)n;(2)求出事件A包含的所有基本事件數(shù)m;(3)代入公式P(A)=,求出P(A)..24、(1)3;(2)∠DEF的大小不變,tan∠DEF=;(3)或.【解析】
(1)當(dāng)t=3時(shí),點(diǎn)E為AB的中點(diǎn),∵A(8,0),C(0,6),∴OA=8,OC=6,∵點(diǎn)D為OB的中點(diǎn),∴DE∥OA,DE=OA=4,∵四邊形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四邊形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不變;理由如下:作DM⊥OA于M,DN⊥AB于N,如圖2所示:∵四邊形OABC是矩形,∴OA⊥AB,∴四邊形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,,∵點(diǎn)D為OB的中點(diǎn),∴M、N分別是OA、AB的中點(diǎn),∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴,∵∠EDF=90°,∴tan∠DEF=;(3)作DM⊥OA于M,DN⊥AB于N,若AD將△DEF的面積分成1:2的兩部分,設(shè)AD交EF于點(diǎn)G,則點(diǎn)G為EF的三等分點(diǎn);①當(dāng)點(diǎn)E到達(dá)中點(diǎn)之前時(shí),如圖3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵點(diǎn)G為EF的三等分點(diǎn),∴G(,),設(shè)直線AD的解析式為y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直線AD的解析式為y=﹣x+6,把G(,)代入得:t=;②當(dāng)點(diǎn)E越過(guò)中點(diǎn)之后,如圖4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵點(diǎn)G為EF的三等分點(diǎn),∴G(,),代入直線AD的解析式y(tǒng)=﹣x+6得:t=;綜上所述,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時(shí),t的值為或.考點(diǎn):四邊形綜合題.25、(1)2(2)【解析】
(1)原式第一項(xiàng)利用負(fù)指數(shù)冪法則計(jì)算,第二項(xiàng)利用特殊角的三角函數(shù)值化簡(jiǎn),第三項(xiàng)利用絕對(duì)值的代數(shù)意義化簡(jiǎn),最后一項(xiàng)利用零指數(shù)冪法則計(jì)算可得到結(jié)果;(2)移項(xiàng)后分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可.【詳解】(1)原
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2019粵教版 高中美術(shù) 選擇性必修2 中國(guó)書畫 《第二單元 中國(guó)書法》大單元整體教學(xué)設(shè)計(jì)2020課標(biāo)
- 2024屆河北省邯鄲市六校第一次教學(xué)質(zhì)量檢測(cè)試題(合肥一模)數(shù)學(xué)試題
- 茶樓合伙協(xié)議書范本
- 北京統(tǒng)一租賃房屋租賃合同
- 童謠兒歌我來(lái)讀活動(dòng)
- 腎臟移植手術(shù)
- 山東省濱州市2024-2025學(xué)年八年級(jí)上學(xué)期期中考試語(yǔ)文試題(含答案)
- 湖南省益陽(yáng)市赫山區(qū)箴言龍光橋?qū)W校2024-2025學(xué)年一年級(jí)上學(xué)期期中考試數(shù)學(xué)試題(無(wú)答案)
- 【初中地理】影響氣候的因素課件-2024-2025學(xué)年湘教版地理七年級(jí)上冊(cè)
- 電影機(jī)械行業(yè)相關(guān)投資計(jì)劃提議
- 運(yùn)維培訓(xùn)課件
- 慢性咳嗽中醫(yī)護(hù)理宣教
- 伐檀課件教案
- 供應(yīng)鏈中心組織架構(gòu)
- 小學(xué)教育中的體驗(yàn)式學(xué)習(xí)方法
- 《機(jī)房技術(shù)培訓(xùn)》課件
- 裝載機(jī)操作安全規(guī)程培訓(xùn)
- 透析中低血壓的預(yù)防及防治
- Part1-2 Unit5 Ancient Civilization教案-【中職專用】高一英語(yǔ)精研課堂(高教版2021·基礎(chǔ)模塊2)
- 學(xué)校宿舍家具采購(gòu)?fù)稑?biāo)方案技術(shù)標(biāo)
- 足療店應(yīng)急處理預(yù)案模板
評(píng)論
0/150
提交評(píng)論