2023屆浙江省嵊州市蔣鎮(zhèn)校中考適應性考試數(shù)學試題含解析_第1頁
2023屆浙江省嵊州市蔣鎮(zhèn)校中考適應性考試數(shù)學試題含解析_第2頁
2023屆浙江省嵊州市蔣鎮(zhèn)校中考適應性考試數(shù)學試題含解析_第3頁
2023屆浙江省嵊州市蔣鎮(zhèn)校中考適應性考試數(shù)學試題含解析_第4頁
2023屆浙江省嵊州市蔣鎮(zhèn)校中考適應性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如果(,均為非零向量),那么下列結論錯誤的是()A.// B.-2=0 C.= D.2.等腰三角形一條邊的邊長為3,它的另兩條邊的邊長是關于x的一元二次方程x2﹣12x+k=0的兩個根,則k的值是()A.27 B.36 C.27或36 D.183.如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=4,AB=18,則△ABD的面積是()A.18 B.36 C.54 D.724.cos30°=()A. B. C. D.5.一組數(shù)據(jù):3,2,5,3,7,5,x,它們的眾數(shù)為5,則這組數(shù)據(jù)的中位數(shù)是()A.2 B.3 C.5 D.76.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點B、C的對應點分別為點F、G.在點E從點C移動到點D的過程中,則點F運動的路徑長為()A.π B.π C.π D.π7.對于點A(x1,y1),B(x2,y2),定義一種運算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四點C,D,E,F(xiàn),滿足,則C,D,E,F(xiàn)四點【】A.在同一條直線上B.在同一條拋物線上C.在同一反比例函數(shù)圖象上D.是同一個正方形的四個頂點8.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.69.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算10.已知:如圖四邊形OACB是菱形,OB在X軸的正半軸上,sin∠AOB=1213.反比例函數(shù)y=kx在第一象限圖象經(jīng)過點A,與BC交于點F.S△AOF=A.15 B.13 C.12 D.5二、填空題(本大題共6個小題,每小題3分,共18分)11.已知關于x的方程x2﹣2x﹣m=0沒有實數(shù)根,那么m的取值范圍是_____.12.早春二月的某一天,大連市南部地區(qū)的平均氣溫為﹣3℃,北部地區(qū)的平均氣溫為﹣6℃,則當天南部地區(qū)比北部地區(qū)的平均氣溫高_____℃.13.當關于x的一元二次方程ax2+bx+c=0有實數(shù)根,且其中一個根為另一個根的2倍時,稱之為“倍根方程”.如果關于x的一元二次方程x2+(m﹣2)x﹣2m=0是“倍根方程”,那么m的值為_____.14.中,,,高,則的周長為______。15.比較大小:_____1.16.如圖,在矩形ABCD中,E是AD邊的中點,,垂足為點F,連接DF,分析下列四個結論:∽;;;其中正確的結論有______.三、解答題(共8題,共72分)17.(8分)如圖,已知反比例函數(shù)和一次函數(shù)的圖象相交于第一象限內的點A,且點A的橫坐標為1.過點A作AB⊥x軸于點B,△AOB的面積為1.求反比例函數(shù)和一次函數(shù)的解析式.若一次函數(shù)的圖象與x軸相交于點C,求∠ACO的度數(shù).結合圖象直接寫出:當>>0時,x的取值范圍.18.(8分)如圖,AB是⊙O直徑,BC⊥AB于點B,點C是射線BC上任意一點,過點C作CD切⊙O于點D,連接AD.求證:BC=CD;若∠C=60°,BC=3,求AD的長.19.(8分)如圖,在平面直角坐標系中,點A和點C分別在x軸和y軸的正半軸上,OA=6,OC=4,以OA,OC為鄰邊作矩形OABC,動點M,N以每秒1個單位長度的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.(1)直接寫出點B的坐標為,直線OB的函數(shù)表達式為;(2)記△OMP的面積為S,求S與t的函數(shù)關系式;并求t為何值時,S有最大值,并求出最大值.20.(8分)某校為了解本校學生每周參加課外輔導班的情況,隨機調査了部分學生一周內參加課外輔導班的學科數(shù),并將調查結果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計圖(其中A:0個學科,B:1個學科,C:2個學科,D:3個學科,E:4個學科或以上),請根據(jù)統(tǒng)計圖中的信息,解答下列問題:請將圖2的統(tǒng)計圖補充完整;根據(jù)本次調查的數(shù)據(jù),每周參加課外輔導班的學科數(shù)的眾數(shù)是個學科;若該校共有2000名學生,根據(jù)以上調查結果估計該校全體學生一周內參加課外輔導班在3個學科(含3個學科)以上的學生共有人.21.(8分)觀察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④個等式為;根據(jù)上面等式的規(guī)律,猜想第n個等式(用含n的式子表示,n是正整數(shù)),并說明你猜想的等式正確性.22.(10分)如果a2+2a-1=0,求代數(shù)式的值.23.(12分)計算:(π﹣3.14)0﹣2﹣|﹣3|.24.如今,旅游度假成為了中國人慶祝傳統(tǒng)春節(jié)的一項的“新年俗”,山西省旅發(fā)委發(fā)布的《2018年“春節(jié)”假日旅游市場總結分析報告》中稱:山西春節(jié)旅游供需兩旺,實現(xiàn)了“旅游接待”與“經(jīng)濟效益”的雙豐收,請根據(jù)圖表信息解決問題:(1)如圖1所示,山西近五年春節(jié)假日接待海內外游客的數(shù)量逐年增加,2018年首次突破了“千萬”大關,達到萬人次,比2017年春節(jié)假日增加萬人次.(2)2018年2月15日﹣20日期間,山西省35個重點景區(qū)每日接待游客數(shù)量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客數(shù)量(萬人次)7.5682.83119.5184.38103.2151.55這組數(shù)據(jù)的中位數(shù)是萬人次.(3)根據(jù)圖2中的信息預估:2019年春節(jié)假日山西旅游總收入比2018年同期增長的百分率約為,理由是.(4)春節(jié)期間,小明在“青龍古鎮(zhèn)第一屆新春廟會”上購買了A,B,C,D四枚書簽(除圖案外完全相同).正面分別印有“剪紙藝術”、“國粹京劇”、“陶瓷藝術”、“皮影戲”的圖案(如圖3),他將書簽背面朝上放在桌面上,從中隨機挑選兩枚送給好朋友,求送給好朋友的兩枚書簽中恰好有“剪紙藝術”的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題解析:向量最后的差應該還是向量.故錯誤.故選B.2、B【解析】試題分析:由于等腰三角形的一邊長3為底或為腰不能確定,故應分兩種情況進行討論:(3)當3為腰時,其他兩條邊中必有一個為3,把x=3代入原方程可求出k的值,進而求出方程的另一個根,再根據(jù)三角形的三邊關系判斷是否符合題意即可;(3)當3為底時,則其他兩條邊相等,即方程有兩個相等的實數(shù)根,由△=0可求出k的值,再求出方程的兩個根進行判斷即可.試題解析:分兩種情況:(3)當其他兩條邊中有一個為3時,將x=3代入原方程,得:33-33×3+k=0解得:k=37將k=37代入原方程,得:x3-33x+37=0解得x=3或93,3,9不能組成三角形,不符合題意舍去;(3)當3為底時,則其他兩邊相等,即△=0,此時:344-4k=0解得:k=3將k=3代入原方程,得:x3-33x+3=0解得:x=63,6,6能夠組成三角形,符合題意.故k的值為3.故選B.考點:3.等腰三角形的性質;3.一元二次方程的解.3、B【解析】

根據(jù)題意可知AP為∠CAB的平分線,由角平分線的性質得出CD=DH,再由三角形的面積公式可得出結論.【詳解】由題意可知AP為∠CAB的平分線,過點D作DH⊥AB于點H,∵∠C=90°,CD=1,∴CD=DH=1.∵AB=18,∴S△ABD=AB?DH=×18×1=36故選B.【點睛】本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.4、C【解析】

直接根據(jù)特殊角的銳角三角函數(shù)值求解即可.【詳解】故選C.【點睛】考點:特殊角的銳角三角函數(shù)點評:本題屬于基礎應用題,只需學生熟練掌握特殊角的銳角三角函數(shù)值,即可完成.5、C【解析】分析:眾數(shù)是指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù),一組數(shù)據(jù)可以有多個眾數(shù),也可以沒有眾數(shù);中位數(shù)是指將數(shù)據(jù)按大小順序排列起來形成一個數(shù)列,居于數(shù)列中間位置的那個數(shù)據(jù).根據(jù)定義即可求出答案.詳解:∵眾數(shù)為5,∴x=5,∴這組數(shù)據(jù)為:2,3,3,5,5,5,7,∴中位數(shù)為5,故選C.點睛:本題主要考查的是眾數(shù)和中位數(shù)的定義,屬于基礎題型.理解他們的定義是解題的關鍵.6、D【解析】

點F的運動路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【詳解】如圖,點F的運動路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.【點睛】本題考查了矩形的性質、特殊角的三角函數(shù)值、含30°角的直角三角形的性質、弧長公式等知識,解題的關鍵是判斷出點F運動的路徑.7、A?!窘馕觥俊邔τ邳cA(x1,y1),B(x2,y2),,∴如果設C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6),那么,。又∵,∴?!?。令,則C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6)都在直線上,∴互不重合的四點C,D,E,F(xiàn)在同一條直線上。故選A。8、C【解析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質;矩形的性質;勾股定理;銳角三角函數(shù).9、B【解析】

有旋轉的性質得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結論.【詳解】把△IBE繞B順時針旋轉90°,使BI與AB重合,E旋轉到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉的性質:旋轉前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關鍵.10、A【解析】

過點A作AM⊥x軸于點M,設OA=a,通過解直角三角形找出點A的坐標,再根據(jù)四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結合菱形的面積公式即可得出a的值,進而依據(jù)點A的坐標得到k的值.【詳解】過點A作AM⊥x軸于點M,如圖所示.設OA=a=OB,則,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=1213∴AM=OA?sin∠AOB=1213a,OM=5∴點A的坐標為(513a,12∵四邊形OACB是菱形,S△AOF=392∴12OB×AM=39即12×a×12解得a=±132∴a=132,即A(5∵點A在反比例函數(shù)y=kx∴k=52故選A.【解答】解:【點評】本題考查了菱形的性質、解直角三角形以及反比例函數(shù)圖象上點的坐標特征,解題的關鍵是利用S△AOF=12S菱形OBCA二、填空題(本大題共6個小題,每小題3分,共18分)11、m<﹣1.【解析】

根據(jù)根的判別式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【詳解】∵關于x的方程x2﹣2x﹣m=0沒有實數(shù)根,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,解得:m<﹣1,故答案為:m<﹣1.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.12、3【解析】

用南部氣溫減北部的氣溫,根據(jù)“減去一個數(shù)等于加上這個數(shù)的相反數(shù)”求出它們的差就是高出的溫度.【詳解】解:(﹣3)﹣(﹣6)=﹣3+6=3℃.答:當天南部地區(qū)比北部地區(qū)的平均氣溫高3℃,故答案為:3.【點睛】本題考查了有理數(shù)的減法運算法則,減法運算法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù).13、-1或-4【解析】分析:設“倍根方程”的一個根為,則另一根為,由一元二次方程根與系數(shù)的關系可得,由此可列出關于m的方程,解方程即可求得m的值.詳解:由題意設“倍根方程”的一個根為,另一根為,則由一元二次方程根與系數(shù)的關系可得:,∴,∴,化簡整理得:,解得.故答案為:-1或-4.點睛:本題解題的關鍵是熟悉一元二次方程根與系數(shù)的關系:若一元二次方程的兩根分別為,則.14、32或42【解析】

根據(jù)題意,分兩種情況討論:①若∠ACB是銳角,②若∠ACB是鈍角,分別畫出圖形,利用勾股定理,即可求解.【詳解】分兩種情況討論:①若∠ACB是銳角,如圖1,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9+5+15+13=42,②若∠ACB是鈍角,如圖2,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9-5+15+13=32,故答案是:32或42.【點睛】本題主要考查勾股定理,根據(jù)題意,畫出圖形,分類進行計算,是解題的關鍵.15、【解析】

先將1化為根號的形式,根據(jù)被開方數(shù)越大值越大即可求解.【詳解】解:,,,故答案為>.【點睛】本題考查實數(shù)大小的比較,比較大小時,常用的方法有:作差法,作商法,如果有一個是二次根式,要把另一個也化為二次根式的形式,根據(jù)被開方數(shù)的大小進行比較.16、【解析】

①證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②由AD∥BC,推出△AEF∽△CBF,得到,由AE=AD=BC,得到,即CF=2AF;③作DM∥EB交BC于M,交AC于N,證明DM垂直平分CF,即可證明;④設AE=a,AB=b,則AD=2a,根據(jù)△BAE∽△ADC,得到,即b=a,可得tan∠CAD=.【詳解】如圖,過D作DM∥BE交AC于N,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于點F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,即CF=2AF,∴CF=2AF,故②正確;作DM∥EB交BC于M,交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,∴,即b=a,∴tan∠CAD=,故④錯誤;故答案為:①②③.【點睛】本題主要考查了相似三角形的判定和性質,矩形的性質,圖形面積的計算以及解直角三角形的綜合應用,正確的作出輔助線構造平行四邊形是解題的關鍵.三、解答題(共8題,共72分)17、(1)y=;y=x+1;(2)∠ACO=45°;(3)0<x<1.【解析】

(1)根據(jù)△AOB的面積可求AB,得A點坐標.從而易求兩個函數(shù)的解析式;(2)求出C點坐標,在△ABC中運用三角函數(shù)可求∠ACO的度數(shù);(3)觀察第一象限內的圖形,反比例函數(shù)的圖象在一次函數(shù)的圖象的上面部分對應的x的值即為取值范圍.【詳解】(1)∵△AOB的面積為1,并且點A在第一象限,∴k=2,∴y=;∵點A的橫坐標為1,∴A(1,2).把A(1,2)代入y=ax+1得,a=1.∴y=x+1.(2)令y=0,0=x+1,∴x=?1,∴C(?1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由圖象可知,在第一象限,當y>y>0時,0<x<1.在第三象限,當y>y>0時,?1<x<0(舍去).【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關鍵在于結合函數(shù)圖象進行解答.18、(1)證明見解析;(2).【解析】

(1)根據(jù)切線的判定定理得到BC是⊙O的切線,再利用切線長定理證明即可;(2)根據(jù)含30°的直角三角形的性質、正切的定義計算即可.【詳解】(1)∵AB是⊙O直徑,BC⊥AB,∴BC是⊙O的切線,∵CD切⊙O于點D,∴BC=CD;(2)連接BD,∵BC=CD,∠C=60°,∴△BCD是等邊三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直徑,∴∠ADB=90°,∴AD=BD?tan∠ABD=.【點睛】本題考查了切線的性質、直角三角形的性質、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.19、(1),;(2),1,1.【解析】

(1)根據(jù)四邊形OABC為矩形即可求出點B坐標,設直線OB解析式為,將B代入即可求直線OB的解析式;(2)由題意可得,由(1)可得點的坐標為,表達出△OMP的面積即可,利用二次函數(shù)的性質求出最大值.【詳解】解:(1)∵OA=6,OC=4,四邊形OABC為矩形,∴AB=OC=4,∴點B,設直線OB解析式為,將B代入得,解得,∴,故答案為:;(2)由題可知,,由(1)可知,點的坐標為,∴當時,有最大值1.【點睛】本題考查了二次函數(shù)與幾何動態(tài)問題,解題的關鍵是根據(jù)題意表達出點的坐標,利用幾何知識列出函數(shù)關系式.20、(1)圖形見解析;(2)1;(3)1.【解析】

(1)由A的人數(shù)及其所占百分比求得總人數(shù),總人數(shù)減去其它類別人數(shù)求得B的人數(shù)即可補全圖形;(2)根據(jù)眾數(shù)的定義求解可得;(3)用總人數(shù)乘以樣本中D和E人數(shù)占總人數(shù)的比例即可得.【詳解】解:(1)∵被調查的總人數(shù)為20÷20%=100(人),則輔導1個學科(B類別)的人數(shù)為100﹣(20+30+10+5)=35(人),補全圖形如下:(2)根據(jù)本次調查的數(shù)據(jù),每周參加課外輔導班的學科數(shù)的眾數(shù)是1個學科,故答案為1;(3)估計該校全體學生一周內參加課外輔導班在3個學科(含3個學科)以上的學生共有2000×=1(人),故答案為1.【點睛】此題主要考查了條形統(tǒng)計圖的應用以及扇形統(tǒng)計圖應用、利用樣本估計總體等知識,利用圖形得出正確信息求出樣本容量是解題關鍵.21、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,證明詳見解析.【解析】

(1)根據(jù)①②③的規(guī)律即可得出第④個等式;(2)第n個等式為(n+1)2﹣2n=n2+1,把等式左邊的完全平方公式展開后再合并同類項即可得出右邊.【詳解】(1)∵22﹣2×1=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論