版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Mediumandsmall-scaleanalysisoffinancialdataAbstractAstochasticanalysisoffinancialdataispresented.Inparticularweinvestigatehowthestatisticsoflogreturnschangewithdifferenttimedelayst.Thescale-dependentbehaviouroffinancialdatacanbedividedintotworegions.Thefirsttimerange,thesmall-timescaleregion(intherangeofseconds)seemstobecharacterisedbyuniversalfeatures.Thesecondtimerange,themedium-timescalerangefromseveralminutesupwardscanbecharacterisedbyacascadeprocess,whichisgivenbyastochasticMarkovprocessinthescaleτ.AcorrespondingFokker–Planckequationcanbeextractedfromgivendataandprovidesanon-equilibriumthermodynamicaldescriptionofthecomplexityoffinancialdata.Keywords:Econophysics;Financialmarkets;Stochasticprocesses;Fokker–Planckequation1.IntroductionOneoftheoutstandingfeaturesofthecomplexityoffinancialmarketsisthatveryoftenfinancialquantitiesdisplaynon-Gaussianstatisticsoftendenotedasheavytailedorintermittentstatistics.Tocharacterizethefluctuationsofafinancialtimeseriesx(t),mostcommonlyquantitieslikereturns,logreturnsorpriceincrementsareused.Here,weconsiderthestatisticsofthelogreturny(τ)overacertaintimescalet,whichisdefinedasy(τ)=logx(t+τ)-logx(t),(1)wherex(t)denotesthepriceoftheassetattimet.Acommonproblemintheanalysisoffinancialdataisthequestionofstationarityforthediscussedstochasticquantities.Inparticularwefindinouranalysisthatthemethodsseemtoberobustagainstnonstationarityeffects.Thismaybeduetothedataselection.Notethattheuseof(conditional)returnsofscaleτcorrespondstoaspecificfilteringofthedata.Neverthelesstheparticularresultschangeslightlyfordifferentdatawindows,indicatingapossibleinfluenceofnonstationarityeffects.Inthispaperwefocusontheanalysisandreconstructionoftheprocessesforagivendatawindow(timeperiod).TheanalysispresentedismainlybasedonBayerdataforthetimespanof1993–2003.ThefinancialdatasetswereprovidedbytheKarlsruherKapitalmarktDatenbank(KKMDB).2.Small-scaleanalysisOneremarkablefeatureoffinancialdataisthefactthattheprobabilitydensityfunctions(pdfs)arenotGaussian,butexhibitheavytailedshapes.Anotherremarkablefeatureisthechangeoftheshapewiththesizeofthescalevariableτ.Toanalysethechangingstatisticsofthepdfswiththescaletanon-parametricapproachischosen.Thedistancebetweenthepdfp(y(τ))onatimescaleτandapdfpT(y(T))onareferencetimescaleTiscomputed.Asareferencetimescale,T=1sischosen,whichisclosetothesmallestavailabletimescaleinourdatasetsandonwhichtherearestillsufficientevents.Inordertobeabletocomparetheshapeofthepdfsandtoexcludeeffectsduetovariationsofthemeanandvariance,allpdfsp(y(τ))havebeennormalisedtoazeromeanandastandarddeviationof1.Asameasuretoquantifythedistancebetweenthetwodistributionsp(y(τ))andpT(y(T)),theKullback–Leiblerentropyisused.dK(τ)=(2)TheevolutionofdKwithincreasingtisillustrated.Thisquantifiesthechangeoftheshapeofthepdfs.Fordifferentstockswefoundthatfortimescalessmallerthanabout1minalineargrowthofthedistancemeasureseemstobeuniversallypresent.IfanormalisedGaussiandistributionistakenasareferencedistribution,thefastdeviationfromtheGaussianshapeinthesmall-timescaleregimebecomesevident.ForlargertimescalesdKremainsapproximatelyconstant,indicatingaveryslowchangeoftheshapeofthepdfs.3.MediumscaleanalysisNextthebehaviourforlargertimescales(τ>1min)isdiscussed.Weproceedwiththeideaofacascade.itispossibletograspthecomplexityoffinancialdatabycascadeprocessesrunninginthevariableτ.InparticularithasbeenshownthatitispossibletoestimatedirectlyfromgivendataastochasticcascadeprocessintheformofaFokker–Planckequation.Theunderlyingideaofthisapproachistoaccessstatisticsofallordersofthefinancialdatabythegeneraljointn-scaleprobabilitydensitiesp(y1,τ1;y2,τ2;…;yN,τN).Hereweusetheshorthandnotationy1=y(τ1)andtakewithoutlossofgeneralityτi<τi+1.Thesmallerlogreturnsy(τi)arenestedinsidethelargerlogreturnsy(τi+1)withcommonendpointt.Thejointpdfscanbeexpressedaswellbythemultipleconditionalprobabilitydensitiesp(yi,ti│yi+1,ti+1;...;yN,tN).Thisverygeneraln-scalecharacterisationofadataset,whichcontainsthegeneraln-pointstatistics,canbesimplifiedessentiallyifthereisastochasticprocessint,whichisaMarkovprocess.Thisisthecaseiftheconditionalprobabilitydensitiesfulfilthefollowingrelations:p(y1,τ1│y2,τ2;y3,τ3;...;yN,τN)=p(y1,τ1│y2)(3)Consequently,p(y1,τ1;…;yN,τN)=p(y1,τ1│y2)……p(yN-1,τN-1│yN,τN)·p(yN,τN)(4)holds.Eq.(4)indicatestheimportanceoftheconditionalpdfforMarkovprocesses.Knowledgeofp(y,τ│y0,τ0)(forarbitraryscalesτandτ0withτ<τ0)issufficienttogeneratetheentirestatisticsoftheincrement,encodedintheN-pointprobabilitydensityp(y1,τ1;y2,τ2;…;yN,τN).ForMarkovprocessestheconditionalprobabilitydensitysatisfiesamasterequation,whichcanbeputintotheformofaKramers–MoyalexpansionforwhichtheKramers–MoyalcoefficientsD(K)(y,τ)aredefinedasthelimit△τ→0oftheconditionalmomentsM(K)(y,τ,△τ):(5)(6)Forageneralstochasticprocess,allKramers–Moyalcoefficientsaredifferentfromzero.AccordingtoPawula’stheorem,however,theKramers–Moyalexpansionstopsafterthesecondterm,providedthatthefourthordercoefficientD(4)(y,τ)vanishes.Inthatcase,theKramers–MoyalexpansionreducestoaFokker–Planckequation(alsoknownasthebackwardsorsecondKolmogorovequation):(7)D(1)isdenotedasdriftterm,D(2)asdiffusionterm.Theprobabilitydensityp(y,τ)hastosatisfythesameequation,ascanbeshownbyasimpleintegrationofEq.(7).4.DiscussionTheresultsindicatethatforfinancialdatatherearetwoscaleregimes.Inthesmall-scaleregimetheshapeofthepdfschangesveryfastandameasureliketheKullback–Leiblerentropyincreaseslinearly.Attimescalesofafewsecondsnotallavailableinformationmaybeincludedinthepriceandprocessesnecessaryforpriceformationtakeplace.Neverthelessthisregimeseemstoexhibitawell-definedstructure,expressedbytheverysimplefunctionalformoftheKullback–Leiblerentropywithrespecttothetimescaleτ.Theupperboundaryintimescaleforthisregimeseemstobeverysimilarfordifferentstocks.Basedonastochasticanalysiswehaveshownthatasecondtimerange,themediumscalerangeexists,wheremulti-scalejointprobabilitydensitiescanbeexpressedbyastochasticcascadeprocess.Here,theinformationonthecomprehensivemulti-scalestatisticscanbeexpressedbysimpleconditionedprobabilitydensities.Thissimplificationmaybeseeninanalogytothethermodynamicaldescriptionofagasbymeansofstatisticalmechanics.Thecomprehensivestatisticalquantityforthegasisthejointn-particleprobabilitydensity,whichdescribesthelocationandthemomentumofalltheindividualparticles.Oneessentialsimplificationforthekineticgastheoryisthesingleparticleapproximation.TheBoltzmannequationisanequationforthetimeevolutionoftheprobabilitydensityp(x;p;t)inone-particlephasespace,wherexandparepositionandmomentum,respectively.InanalogytothiswehaveobtainedforthefinancialdataaFokker–Planckequationforthescaletevolutionofconditionalprobabilities,p(yi,τi│yi+1,τi+1).Inourcascadepicturetheconditionalprobabilitiescannotbereducedfurthertosingleprobabilitydensities,p(yi,τi),withoutlossofinformation,asitisdoneforthekineticgastheory.Asalastpoint,wewouldliketodrawattentiontothefactthatbasedontheinformationobtainedbytheFokker–Planckequationitispossibletogenerateartificialdatasets.Theknowledgeofconditionalprobabilitiescanbeusedtogeneratetimeseries.Oneimportantpointisthatincrementsy(τ)withcommonrightendpointsshouldbeused.Bytheknowledgeofthen-scaleconditionalprobabilitydensityofally(τi)thestochasticallycorrectnextpointcanbeselected.Wecouldshowthattimeseriesforturbulentdatageneratedbythisprocedurereproducetheconditionalprobabilitydensities,asthecentralquantityforacomprehensivemulti-scalecharacterisation.AndreasP-Nawroth,JoachimPeinke.Carl-von-Ossietzky奧爾登堡大學(xué),D-26111奧爾登伯格,德國[J].2008年3月30日.中小規(guī)模的金融數(shù)據(jù)分析摘要財(cái)務(wù)數(shù)據(jù)隨機(jī)分析已經(jīng)被提出,特別是我們探討如何統(tǒng)計(jì)在不同時(shí)間里記錄返回的變化。財(cái)務(wù)數(shù)據(jù)的時(shí)間規(guī)模依賴行為可分為兩個(gè)區(qū)域:第一個(gè)時(shí)間范圍是被描述為普遍特征的小時(shí)就區(qū)域(范圍秒)。第二個(gè)時(shí)間范圍是增加了幾分鐘的可以被描述為隨機(jī)的級(jí)聯(lián)過程的中期時(shí)間范圍。相應(yīng)的Fokker-Planck方程可以從特定的數(shù)據(jù)提取,并提供了一個(gè)非平衡熱力學(xué)描述的復(fù)雜的財(cái)務(wù)數(shù)據(jù)。關(guān)鍵詞:經(jīng)濟(jì)物理學(xué);金融市場(chǎng);隨機(jī)過程;Fokker-Planck方程前言復(fù)雜的金融市場(chǎng)的其中一個(gè)突出特點(diǎn)是資金數(shù)量顯示非高斯統(tǒng)計(jì)往往被命名為重尾或間歇統(tǒng)計(jì)。描述金融時(shí)間序列x(t)的波動(dòng),最常見的就是log函數(shù)或價(jià)格增量的使用。在這里我們認(rèn)為,log函數(shù)y(τ)超過一定時(shí)間t的統(tǒng)計(jì),被定義為:y(r)=logx(t+r)-logx(t)(1)其中x(t)是指在時(shí)間t時(shí)資產(chǎn)的價(jià)格。在財(cái)務(wù)分析數(shù)據(jù)中一個(gè)常見的問題是討論隨機(jī)數(shù)量的平穩(wěn)性,尤其是我們發(fā)現(xiàn)在我們的分析中采用什么樣的方法似乎是強(qiáng)大的非平穩(wěn)性的影響,這可能是由于數(shù)據(jù)的選擇。請(qǐng)注意,有條件的應(yīng)用τ相當(dāng)于一個(gè)特定的數(shù)據(jù)過濾。盡管如此,特殊的結(jié)果略微改變了不同的數(shù)據(jù)窗口,顯示出非平穩(wěn)性影響的可能性。在本文中,對(duì)于一個(gè)特定的數(shù)據(jù)窗口(時(shí)間段)我們側(cè)重于分析和重建進(jìn)程。目前已有的分析主要是基于1993至2003年的拜耳數(shù)據(jù),財(cái)務(wù)數(shù)據(jù)集是由KapitabmarktDatenbank(KKMDB)提供。第二章小規(guī)模分析財(cái)務(wù)數(shù)據(jù)的一個(gè)突出特點(diǎn)是事實(shí)上概率密度函數(shù)(pdfs)不是Gaussian,而是展覽重尾形狀。另一個(gè)顯著的特點(diǎn)是形狀伴隨著可變規(guī)模τ的大小而變化。分析pdfs伴隨著規(guī)模τ的變化的統(tǒng)計(jì),非參數(shù)方法是一種選擇。Pdfp(y(τ))的時(shí)間T和PT(y(T))的參考時(shí)間T之間的差距是可以計(jì)算的。作為一個(gè)參考的時(shí)間,在我們的數(shù)據(jù)集上接近最小的可用時(shí)間但仍然有足夠的活動(dòng),T=1s是選擇。為了能夠比較pdfs,并排除由于不同的均值和方差的影響,所有的pdfsp(y(τ))正?;癁榱闫骄瑯?biāo)準(zhǔn)偏差為1。作為衡量量化兩個(gè)分布p(y(τ))和PT(y(T))之間的距離,需使用Kullback–Leibler:dK(τ)=(2)dK隨著t的增加而變化,量化的改變pdfs的形狀。對(duì)于不同的股票,目前我們發(fā)現(xiàn)時(shí)間小于1分鐘的線性增長(zhǎng)的距離測(cè)度似乎是普遍的。如果正?;腉aussian分布是作為參考分布的,在小型時(shí)間表制度中快速偏離Gaussian變得很明顯。對(duì)于較大的時(shí)間規(guī)模dK仍然接近常數(shù),這表明pdfs的形狀改變的非常緩慢。第三章中等規(guī)模的分析接下來,對(duì)于較大的時(shí)間尺度(τ﹥1分鐘)進(jìn)行討論。我們從級(jí)聯(lián)觀點(diǎn)著手,有可能通過級(jí)聯(lián)運(yùn)行過程中的變量τ掌握復(fù)雜的財(cái)務(wù)數(shù)據(jù),尤其是它已被證明,有可能從給出的隨機(jī)級(jí)聯(lián)過程Fokker-Planck方程的形式中直接估計(jì)數(shù)據(jù)。這一做法的基本意圖是為了獲取所有的財(cái)務(wù)數(shù)據(jù)的一般性聯(lián)合正規(guī)模概率密度p(y1,τ1;y2,τ2;…;yN,τN)的訂單統(tǒng)計(jì)。在這里,我們使用速記符號(hào)y1=y(τ1),采取完整的概括性的τi<τi+1,包含在較大的y(τi+1)中的較小的y(τi)都取決于t。復(fù)合的pdfs可由多個(gè)條件概率密度p(yi,τi│yi+1,τi+1;...;yN,τN)來表達(dá),包含眾多點(diǎn)n的數(shù)據(jù)集n大概的數(shù)值范圍,基本上可以簡(jiǎn)化為馬爾可夫過程中τ的一個(gè)隨機(jī)變化過程。這種情況下,如果條件密度符合下列關(guān)系:p(y1,τ1│y2,τ2;y3,τ3;...;yN,τtN)=p(y1,τ1│y2)(3)因此,p(y1,τ1;…;yN,τN)=p(y1,τ1│y2)……p(yN-1,τN-1│yN,τN)·p(yN,τ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年化療藥物供應(yīng)合同
- 2025年宇宙探索擔(dān)保協(xié)議
- 2025年商鋪抵押借款轉(zhuǎn)換托管協(xié)議
- 2025年度木地板施工與室內(nèi)裝修一體化合同4篇
- 2025年壁球館特許經(jīng)營合同
- 2025年體育館用水合同
- 二零二五版水資源合理化利用建議書范本3篇
- 2024云南公務(wù)員考試行測(cè)真題(行政執(zhí)法類)
- 2025版委托代理企業(yè)交稅及稅收籌劃與申報(bào)合同6篇
- 2024經(jīng)濟(jì)合同范本
- 高校鑄牢中華民族共同體意識(shí)教育的路徑研究
- 《面神經(jīng)炎護(hù)理措施分析》3900字(論文)
- 城市微電網(wǎng)建設(shè)實(shí)施方案
- 企業(yè)文化融入中華傳統(tǒng)文化的實(shí)施方案
- 9.1增強(qiáng)安全意識(shí) 教學(xué)設(shè)計(jì) 2024-2025學(xué)年統(tǒng)編版道德與法治七年級(jí)上冊(cè)
- 《化工設(shè)備機(jī)械基礎(chǔ)(第8版)》全套教學(xué)課件
- 人教版八年級(jí)數(shù)學(xué)下冊(cè)舉一反三專題17.6勾股定理章末八大題型總結(jié)(培優(yōu)篇)(學(xué)生版+解析)
- 2024屆上海高考語文課內(nèi)古詩文背誦默寫篇目(精校版)
- DL-T5024-2020電力工程地基處理技術(shù)規(guī)程
- 初中數(shù)學(xué)要背誦記憶知識(shí)點(diǎn)(概念+公式)
- 駕照體檢表完整版本
評(píng)論
0/150
提交評(píng)論