版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
寧夏中衛(wèi)市一中2023屆高三下第二次質(zhì)量檢查數(shù)學(xué)試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.2.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.3.如圖所示點是拋物線的焦點,點、分別在拋物線及圓的實線部分上運動,且總是平行于軸,則的周長的取值范圍是()A. B. C. D.4.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-35.在平面直角坐標系中,將點繞原點逆時針旋轉(zhuǎn)到點,設(shè)直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.6.設(shè)實數(shù)、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.147.已知等比數(shù)列滿足,,等差數(shù)列中,為數(shù)列的前項和,則()A.36 B.72 C. D.8.已知集合,集合,那么等于()A. B. C. D.9.若數(shù)列滿足且,則使的的值為()A. B. C. D.10.的展開式中有理項有()A.項 B.項 C.項 D.項11.已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點所在區(qū)間為()A. B. C. D.12.已知集合,定義集合,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線,點,在曲線上,且以為直徑的圓的方程是.則_______.14.已知,(,),則=_______.15.在中,,點是邊的中點,則__________,________.16.動點到直線的距離和他到點距離相等,直線過且交點的軌跡于兩點,則以為直徑的圓必過_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和為,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)證明:.18.(12分)已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調(diào)遞增區(qū)間;(2)若銳角中角所對的邊分別為,且,求的取值范圍.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實數(shù),使得,證明:.20.(12分)某企業(yè)為了了解該企業(yè)工人組裝某產(chǎn)品所用時間,對每個工人組裝一個該產(chǎn)品的用時作了記錄,得到大量統(tǒng)計數(shù)據(jù).從這些統(tǒng)計數(shù)據(jù)中隨機抽取了個數(shù)據(jù)作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時不超過(分鐘),則稱這個工人為優(yōu)秀員工.(1)求這個樣本數(shù)據(jù)的中位數(shù)和眾數(shù);(2)以這個樣本數(shù)據(jù)中優(yōu)秀員工的頻率作為概率,任意調(diào)查名工人,求被調(diào)查的名工人中優(yōu)秀員工的數(shù)量分布列和數(shù)學(xué)期望.21.(12分)設(shè)函數(shù).(1)當時,求不等式的解集;(2)若對任意都有,求實數(shù)的取值范圍.22.(10分)已知函數(shù).(Ⅰ)求的值;(Ⅱ)若,且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
將已知條件轉(zhuǎn)化為的形式,由此確定數(shù)列為的項.【詳解】由于等差數(shù)列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數(shù)列的基本量計算,屬于基礎(chǔ)題.2、D【解析】
連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎(chǔ)題3、B【解析】
根據(jù)拋物線方程求得焦點坐標和準線方程,結(jié)合定義表示出;根據(jù)拋物線與圓的位置關(guān)系和特點,求得點橫坐標的取值范圍,即可由的周長求得其范圍.【詳解】拋物線,則焦點,準線方程為,根據(jù)拋物線定義可得,圓,圓心為,半徑為,點、分別在拋物線及圓的實線部分上運動,解得交點橫坐標為2.點、分別在兩個曲線上,總是平行于軸,因而兩點不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.【點睛】本題考查了拋物線定義、方程及幾何性質(zhì)的簡單應(yīng)用,圓的幾何性質(zhì)應(yīng)用,屬于中檔題.4、D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問題,也考查了數(shù)形結(jié)合思想的應(yīng)用問題.5、A【解析】
設(shè)直線直線與軸正半軸所成的最小正角為,由任意角的三角函數(shù)的定義可以求得的值,依題有,則,利用誘導(dǎo)公式即可得到答案.【詳解】如圖,設(shè)直線直線與軸正半軸所成的最小正角為因為點在角的終邊上,所以依題有,則,所以,故選:A【點睛】本題考查三角函數(shù)的定義及誘導(dǎo)公式,屬于基礎(chǔ)題.6、D【解析】
做出滿足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當目標函數(shù)過點時,取得最小值,由,解得,即,所以的最小值為.故選:D.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標函數(shù)的最值,屬于基礎(chǔ)題.7、A【解析】
根據(jù)是與的等比中項,可求得,再利用等差數(shù)列求和公式即可得到.【詳解】等比數(shù)列滿足,,所以,又,所以,由等差數(shù)列的性質(zhì)可得.故選:A【點睛】本題主要考查的是等比數(shù)列的性質(zhì),考查等差數(shù)列的求和公式,考查學(xué)生的計算能力,是中檔題.8、A【解析】
求出集合,然后進行并集的運算即可.【詳解】∵,,∴.故選:A.【點睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎(chǔ)題.9、C【解析】因為,所以是等差數(shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.10、B【解析】
由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關(guān)鍵,屬于基礎(chǔ)題.11、B【解析】由函數(shù)f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調(diào)遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據(jù)函數(shù)的零點存在性定理可知,函數(shù)g(x)的零點所在的區(qū)間是(0,1),故選B.12、C【解析】
根據(jù)定義,求出,即可求出結(jié)論.【詳解】因為集合,所以,則,所以.故選:C.【點睛】本題考查集合的新定義運算,理解新定義是解題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)所在直線方程為設(shè)?點坐標分別為,,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯(lián)立直線與的方程,由,利用弦長公式即可求解.【詳解】因為是圓的直徑,必過圓心點,設(shè)所在直線方程為設(shè)?點坐標分別為,,都在上,故兩式相減,可得(因為是的中點),即聯(lián)立直線與的方程:又,即,即又因為,則有即∴.故答案為:【點睛】本題考查了直線與圓錐曲線的位置關(guān)系、弦長公式,考查了學(xué)生的計算能力,綜合性比較強,屬于中檔題.14、【解析】
先利用倍角公式及差角公式把已知條件化簡可得,平方可得.【詳解】∵,∴,則,平方可得.故答案為:.【點睛】本題主要考查三角恒等變換,倍角公式的合理選擇是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).15、2【解析】
根據(jù)正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數(shù)量積求解即可.【詳解】中,,,可得因為點是邊的中點,所以故答案為:;.【點睛】本題主要考查了三角形的解法,向量的數(shù)量積的應(yīng)用,考查計算能力,屬于中檔題.16、【解析】
利用動點到直線的距離和他到點距離相等,,可知動點的軌跡是以為焦點的拋物線,從而可求曲線的方程,將,代入,利用韋達定理,可得,從而可知以為直徑的圓經(jīng)過原點O.【詳解】設(shè)點,由題意可得,,,可得,設(shè)直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經(jīng)過原點.故答案為:(0,0)【點睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時考查了方程的思想和韋達定理,考查了運算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ),.(Ⅱ)見解析【解析】
(1)由,分和兩種情況,即可求得數(shù)列的通項公式;(2)由題,得,利用等比數(shù)列求和公式,即可得到本題答案.【詳解】(Ⅰ)解:由題,得當時,,得;當時,,整理,得.數(shù)列是以1為首項,2為公比的等比數(shù)列,,;(Ⅱ)證明:由(Ⅰ)知,,故.故得證.【點睛】本題主要考查根據(jù)的關(guān)系式求通項公式以及利用等比數(shù)列的前n項和公式求和并證明不等式,考查學(xué)生的運算求解能力和推理證明能力.18、(1),函數(shù)的單調(diào)遞增區(qū)間為;(2).【解析】
(1)運用降冪公式和輔助角公式,把函數(shù)的解析式化為正弦型函數(shù)解析式形式,根據(jù)已知,可以求出的值,再結(jié)合正弦型函數(shù)的性質(zhì)求出函數(shù)的單調(diào)遞增區(qū)間;(2)由(1)結(jié)合已知,可以求出角的值,通過正弦定理把問題的取值范圍轉(zhuǎn)化為兩邊對角的正弦值的比值的取值范圍,結(jié)合已知是銳角三角形,三角形內(nèi)角和定理,最后求出的取值范圍.【詳解】解:(1)由已知,所以因此令得因此函數(shù)的單調(diào)遞增區(qū)間為(2)由已知,∴由得,因此所以因為為銳角三角形,所以,解得因此,那么【點睛】本題考查了降冪公式、輔助角公式,考查了正弦定理,考查了正弦型三角函數(shù)的單調(diào)性,考查了數(shù)學(xué)運算能力.19、(1)當時,在上遞增,在上遞減;當時,在上遞增,在上遞減,在上遞增;當時,在上遞增;當時,在上遞增,在上遞減,在上遞增;(2)證明見解析【解析】
(1)對求導(dǎo),分,,進行討論,可得的單調(diào)性;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,,設(shè),可得,則,設(shè),對求導(dǎo),利用其單調(diào)性可證明.【詳解】解:的定義域為,因為,所以,當時,令,得,令,得;當時,則,令,得,或,令,得;當時,,當時,則,令,得;綜上所述,當時,在上遞增,在上遞減;當時,在上遞增,在上遞減,在上遞增;當時,在上遞增;當時,在上遞增,在上遞減,在上遞增;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,此時,設(shè),又因為,則,設(shè),則對于任意成立,所以在上是增函數(shù),所以對于,有,即,有,因為,所以,即,又在遞增,所以,即.【點睛】本題主要考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性及導(dǎo)數(shù)在極值點偏移中的應(yīng)用,考查學(xué)生分類討論與轉(zhuǎn)化的思想,綜合性大,屬于難題.20、(1)43,47;(2)分布列見解析,.【解析】
(1)根據(jù)莖葉圖即可得到中位數(shù)和眾數(shù);(2)根據(jù)數(shù)據(jù)可得任取一名優(yōu)秀員工的概率為,故,寫出分布列即可得解.【詳解】(1)中位數(shù)為,眾數(shù)為.(2)被調(diào)查的名工人中優(yōu)秀員工的數(shù)量,任取一名優(yōu)秀員工的概率為,故,,,的分布列如下:故【點睛】此題考查根據(jù)莖葉圖求眾數(shù)和中位數(shù),求離散型隨機變量分布列,根據(jù)分布列求解期望,關(guān)鍵在于準確求解概率,若能準確識別二項分布對于解題能夠起到事半功倍的作用.21、(1)(2)【解析】
利用零點分區(qū)間法,去掉絕對值符號分組討論求并集,對恒成立,則,由三角不等式,得求解【詳解】解:當時,不等式即為,可得或或,解得或或,則原不等式的解集為若對任意、都有,即為,由,當取得等號,則,由,可得,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024行政單位預(yù)算管理風(fēng)險控制合同
- 2024年耗材長期租賃與購買合同3篇
- 2024年限小學(xué)設(shè)施升級裝修服務(wù)協(xié)議版B版
- 氨制冷知識培訓(xùn)
- 經(jīng)典特許經(jīng)營合同04年
- 動物園獸醫(yī)知識培訓(xùn)課件
- 2024年西洋參電商銷售渠道合作協(xié)議3篇
- 中國勞動關(guān)系學(xué)院《英語公共演講》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江中醫(yī)藥大學(xué)《國際信貸與結(jié)算》2023-2024學(xué)年第一學(xué)期期末試卷
- 長治醫(yī)學(xué)院《自動化學(xué)科前沿講座》2023-2024學(xué)年第一學(xué)期期末試卷
- 【案例】串口調(diào)試助手與S7-200SMARTPLC從站通信
- 動態(tài)變形模量Evd試驗記錄
- 2020-2021學(xué)年浙江省溫州市八年級(上)期末數(shù)學(xué)試卷(附答案詳解)
- 蔬菜籽種采購清單
- 工期定額-民用建筑
- 低壓電能表安裝作業(yè)指導(dǎo)書
- 技術(shù)服務(wù)及售后服務(wù)的承諾及保證措施
- (完整版)PCR試題答案版
- 能見度不良時船舶航行須知
- 軟膠囊的制備
- 回風(fēng)立井臨時改絞施工措施
評論
0/150
提交評論