初三數(shù)學(xué)課堂教案七篇_第1頁(yè)
初三數(shù)學(xué)課堂教案七篇_第2頁(yè)
初三數(shù)學(xué)課堂教案七篇_第3頁(yè)
初三數(shù)學(xué)課堂教案七篇_第4頁(yè)
初三數(shù)學(xué)課堂教案七篇_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第初三數(shù)學(xué)課堂教案七篇初三數(shù)學(xué)課堂教案七篇

初三數(shù)學(xué)課堂教案都有哪些?教案,要根據(jù)學(xué)生的實(shí)際改變?cè)鹊慕虒W(xué)計(jì)劃和方法,滿腔熱忱地啟發(fā)學(xué)生的思維,針對(duì)疑點(diǎn)積極引導(dǎo)。下面是小編為大家?guī)?lái)的初三數(shù)學(xué)課堂教案七篇,希望大家能夠喜歡!

初三數(shù)學(xué)課堂教案(精選篇1)

一、教學(xué)目標(biāo)

1.通過(guò)觀察、猜想、比較、具體操作等數(shù)學(xué)活動(dòng),學(xué)會(huì)用計(jì)算器求一個(gè)銳角的三角函數(shù)值。

2.經(jīng)歷利用三角函數(shù)知識(shí)解決實(shí)際問(wèn)題的過(guò)程,促進(jìn)觀察、分析、歸納、交流等能力的發(fā)展。

3.感受數(shù)學(xué)與生活的密切聯(lián)系,豐富數(shù)學(xué)學(xué)習(xí)的成功體驗(yàn),激發(fā)學(xué)生繼續(xù)學(xué)習(xí)的好奇心,培養(yǎng)學(xué)生與他人合作交流的意識(shí)。

二、教材分析

在生活中,我們會(huì)經(jīng)常遇到這樣的問(wèn)題,如測(cè)量建筑物的高度、測(cè)量江河的寬度、船舶的定位等,要解決這樣的問(wèn)題,往往要應(yīng)用到三角函數(shù)知識(shí)。在上節(jié)課中已經(jīng)學(xué)習(xí)了30°,45°,60°角的三角函數(shù)值,可以進(jìn)行一些特定情況下的計(jì)算,但是生活中的問(wèn)題,僅僅依靠這三個(gè)特殊角度的三角函數(shù)值來(lái)解決是不可能的。本節(jié)課讓學(xué)生使用計(jì)算器求三角函數(shù)值,讓他們從繁重的計(jì)算中解脫出來(lái),體驗(yàn)發(fā)現(xiàn)并提出問(wèn)題、分析問(wèn)題、探究解決方法直至最終解決問(wèn)題的過(guò)程。

三、學(xué)校及學(xué)生狀況分析

九年級(jí)的學(xué)生年齡一般在15歲左右,在這個(gè)階段,學(xué)生以抽象邏輯思維為主要發(fā)展趨勢(shì),但在很大程度上,學(xué)生仍然要依靠具體的經(jīng)驗(yàn)材料和操作活動(dòng)來(lái)理解抽象的邏輯關(guān)系。另外,計(jì)算器的使用可以極大減輕學(xué)生的負(fù)擔(dān)。因此,依據(jù)教材中提供的背景材料,輔以計(jì)算器的使用,可以使學(xué)生更好地解決問(wèn)題。

學(xué)生自小學(xué)起就開(kāi)始使用計(jì)算器,對(duì)計(jì)算器的操作比較熟悉。同時(shí),在前面的課程中學(xué)生已經(jīng)學(xué)習(xí)了銳角三角函數(shù)的定義,30°,45°,60°角的三角函數(shù)值以及與它們相關(guān)的簡(jiǎn)單計(jì)算,具備了學(xué)習(xí)本節(jié)課的知識(shí)和技能。

四、教學(xué)設(shè)計(jì)

(一)復(fù)習(xí)提問(wèn)

1.梯子靠在墻上,如果梯子與地面的夾角為60°,梯子的長(zhǎng)度為3米,那么梯子底端到墻的距離有幾米

學(xué)生活動(dòng):根據(jù)題意,求出數(shù)值。

2.在生活中,梯子與地面的夾角總是60°嗎

不是,可以出現(xiàn)各種角度,60°只是一種特殊現(xiàn)象。

圖1(二)創(chuàng)設(shè)情境引入課題

1如圖1,當(dāng)?shù)巧嚼|車(chē)的吊箱經(jīng)過(guò)點(diǎn)A到達(dá)點(diǎn)B時(shí),它走過(guò)了200m。已知纜車(chē)的路線與平面的夾角為∠A=16°,那么纜車(chē)垂直上升的距離是多少

哪條線段代表纜車(chē)上升的垂直距離

線段BC。

利用哪個(gè)直角三角形可以求出BC

在Rt△ABC中,BC=ABsin16°,所以BC=200sin16°。

你知道sin16°是多少嗎我們可以借助科學(xué)計(jì)算器求銳角三角形的三角函數(shù)值。那么,怎樣用科學(xué)計(jì)算器求三角函數(shù)呢

用科學(xué)計(jì)算器求三角函數(shù)值,要用sincos和tan鍵。教師活動(dòng):(1)展示下表;(2)按表口述,讓學(xué)生學(xué)會(huì)求sin16°的值。按鍵順序顯示結(jié)果sin16°sin16=sin16°=0275637355

學(xué)生活動(dòng):按表中所列順序求出sin16°的值。

你能求出cos42°,tan85°和sin72°38′25″的值嗎

學(xué)生活動(dòng):類(lèi)比求sin16°的方法,通過(guò)猜想、討論、相互學(xué)習(xí),利用計(jì)算器求相應(yīng)的三角函數(shù)值(操作程序如下表):

按鍵順序顯示結(jié)果cos42°cos42=cos42°=0743144825tan85°tan85=tan85°=114300523sin72°38′25″sin72D′M′S

38D′M′S2

5D′M′S=sin72°38′25″→

0954450321

師:利用科學(xué)計(jì)算器解決本節(jié)一開(kāi)始的問(wèn)題。

生:BC=200sin16°≈5212(m)。

說(shuō)明:利用學(xué)生的學(xué)習(xí)興趣,鞏固用計(jì)算器求三角函數(shù)值的操作方法。

(三)想一想

師:在本節(jié)一開(kāi)始的問(wèn)題中,當(dāng)纜車(chē)?yán)^續(xù)由點(diǎn)B到達(dá)點(diǎn)D時(shí),它又走過(guò)了200m,纜車(chē)由點(diǎn)B到達(dá)點(diǎn)D的行駛路線與水平面的夾角為∠β=42°,由此你還能計(jì)算什么

學(xué)生活動(dòng):(1)可以求出第二次上升的垂直距離DE,兩次上升的垂直距離之和,兩次經(jīng)過(guò)的水平距離,等等。(2)互相補(bǔ)充并在這個(gè)過(guò)程中加深對(duì)三角函數(shù)的認(rèn)識(shí)。

(四)隨堂練習(xí)

1.一個(gè)人由山底爬到山頂,需先爬40°的山坡300m,再爬30°的山坡100m,求山高(結(jié)果精確到0.1m)。

2.如圖2,∠DAB=56°,∠CAB=50°,AB=20m,求圖中避雷針CD的長(zhǎng)度(結(jié)果精確到0.01m)。

圖2圖3

(五)檢測(cè)

如圖3,物華大廈離小偉家60m,小偉從自家的窗中眺望大廈,并測(cè)得大廈頂部的仰角是45°,而大廈底部的俯角是37°,求大廈的高度(結(jié)果精確到01m)。

說(shuō)明:在學(xué)生練習(xí)的同時(shí),教師要巡視指導(dǎo),觀察學(xué)生的學(xué)習(xí)情況,并針對(duì)學(xué)生的困難給予及時(shí)的指導(dǎo)。

(六)小結(jié)

學(xué)生談學(xué)習(xí)本節(jié)的感受,如本節(jié)課學(xué)習(xí)了哪些新知識(shí),學(xué)習(xí)過(guò)程中遇到哪些困難,如何解決困難,等等。

(七)作業(yè)

1.用計(jì)算器求下列各式的值:

(1)tan32°;(2)cos2453°;(3)sin62°11′;(4)tan39°39′39″。

圖42如圖4,為了測(cè)量一條河流的寬度,一測(cè)量員在河岸邊相距180m的P,Q兩點(diǎn)分別測(cè)定對(duì)岸一棵樹(shù)T的位置,T在P的正南方向,在Q的南偏西50°的方向,求河寬(結(jié)果精確到1m)。

五、教學(xué)反思

1.本節(jié)是學(xué)習(xí)用計(jì)算器求三角函數(shù)值并加以實(shí)際應(yīng)用的內(nèi)容,通過(guò)本節(jié)的學(xué)習(xí),可以使學(xué)生充分認(rèn)識(shí)到三角函數(shù)知識(shí)在現(xiàn)實(shí)世界中有著廣泛的應(yīng)用。本節(jié)課的知識(shí)點(diǎn)不是很多,但是學(xué)生通過(guò)積極參與課堂,提高了分析問(wèn)題和解決問(wèn)題的能力,并且在意志力、自信心和理性精神等方面得到了良好的發(fā)展。

2.教師作為學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者和幫助者,依據(jù)教材特點(diǎn)創(chuàng)設(shè)問(wèn)題情境,從學(xué)生已有的知識(shí)背景和活動(dòng)經(jīng)驗(yàn)出發(fā),幫助學(xué)生取得了成功。

初三數(shù)學(xué)課堂教案(精選篇2)

教材分析

本節(jié)內(nèi)容是上一節(jié)課在學(xué)習(xí)余角補(bǔ)角基礎(chǔ)上學(xué)習(xí)的,學(xué)生有了一定的基礎(chǔ),為平面直角坐標(biāo)系的學(xué)習(xí)做好準(zhǔn)備。

學(xué)情分析

本節(jié)課對(duì)于學(xué)生來(lái)說(shuō)學(xué)習(xí)起來(lái)并不太難,在小學(xué)階段學(xué)生已經(jīng)接觸過(guò)方位角的內(nèi)容,而且本節(jié)課內(nèi)容和生活中的方向聯(lián)系緊密,故學(xué)生比較有興趣。

教學(xué)目標(biāo)

理解方位角的意義,掌握方位角的判別和應(yīng)用,通過(guò)現(xiàn)實(shí)情境,充分利用學(xué)生的生活經(jīng)驗(yàn)去體會(huì)方位角的意義。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):方位角的判別與應(yīng)用

難點(diǎn):方位角的畫(huà)法及變式題

教學(xué)過(guò)程(本文來(lái)自優(yōu)秀教育資源網(wǎng)斐.斐.課.件.園)

教學(xué)環(huán)節(jié)教師活動(dòng)預(yù)設(shè)學(xué)生行為設(shè)計(jì)意圖

一、創(chuàng)設(shè)情境,導(dǎo)入新課

二、講授新課

三、鞏固練習(xí)

四、課時(shí)小結(jié)五、布置作業(yè)由四面八方這個(gè)成語(yǔ)引出學(xué)生對(duì)八個(gè)方位的理解

1.先以一個(gè)具體圖形告訴學(xué)生基本知識(shí)點(diǎn),方位角一般是以正南正北為基準(zhǔn),然后向東或西旋轉(zhuǎn)所成的角的始邊方向。

2.師示范方位角的畫(huà)法

3.出示補(bǔ)充例題,引對(duì)學(xué)生通過(guò)小組合作完成。思考并回答老師提出的問(wèn)題

生觀察圖并理解老師的講解。

生觀察并獨(dú)立完成書(shū)中的例題

生先獨(dú)立思考然后與同學(xué)合作完成。激發(fā)學(xué)生的學(xué)習(xí)興趣

通遼具體圖形使學(xué)生初步認(rèn)識(shí)方位角的表示方法。

使學(xué)生通遼具體操作掌握畫(huà)方位角的方法

進(jìn)一步掌握方位角的有關(guān)知識(shí),達(dá)到知識(shí)提升。

板書(shū)設(shè)計(jì)

4.3.3余角和補(bǔ)角(二)——方位角

學(xué)生學(xué)習(xí)活動(dòng)評(píng)價(jià)設(shè)計(jì)

我先將學(xué)生按人數(shù)分成若干小組,在課前先給學(xué)生發(fā)放導(dǎo)學(xué)單,課上先給學(xué)生充分的討論時(shí)間后學(xué)生由小組推薦代表發(fā)言,累積分?jǐn)?shù),每個(gè)小組輪流回答一次,學(xué)生代表回答完畢后,其它同學(xué)補(bǔ)充糾錯(cuò),然后從知識(shí)點(diǎn)是否準(zhǔn)確,語(yǔ)言是否流利,思維是否創(chuàng)新,邏輯是否合理嚴(yán)密等方面來(lái)做出評(píng)價(jià),然后給出相應(yīng)分?jǐn)?shù)。累積到小組積分中課上知識(shí)回答后在練習(xí)部分,設(shè)計(jì)搶答題,小組搶答完成。最后計(jì)算出總分評(píng)出本節(jié)課小組及個(gè)人獎(jiǎng),給予口頭表?yè)P(yáng)。

教學(xué)反思

本節(jié)課是在上節(jié)課余角和補(bǔ)角的基礎(chǔ)上學(xué)習(xí)的,而且在小學(xué)階段也已經(jīng)接觸過(guò)這部分知識(shí)了,基于這個(gè)特點(diǎn),在課堂上我主要采取了自主學(xué)習(xí)的方式,學(xué)生接受的不錯(cuò),本節(jié)課的知識(shí)雖然簡(jiǎn)單但很重要是為以后平面直角坐標(biāo)系做準(zhǔn)備的。出現(xiàn)的問(wèn)題是有個(gè)別同學(xué)對(duì)于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學(xué)講給不明白的同學(xué)聽(tīng),指導(dǎo)其主要從哪方面入手解決此類(lèi)問(wèn)題,還有一點(diǎn),學(xué)生在畫(huà)圖后容易忽略寫(xiě)結(jié)論,應(yīng)強(qiáng)調(diào)。以前在上本節(jié)課時(shí),我是采取的講授法,感覺(jué)學(xué)生不是很愛(ài)聽(tīng),后來(lái)一想,知道了是因?yàn)樾W(xué)時(shí)他們已經(jīng)接觸了這部分知識(shí),所以不愛(ài)聽(tīng),針對(duì)于這種情況,這次我采用了自主學(xué)習(xí)的方式感覺(jué)學(xué)生的積極性上來(lái)了,一節(jié)課氣氛很好,相信效果也不錯(cuò)。以后再講這節(jié)課我將繼續(xù)采用這種方式,在此基礎(chǔ)上使其更加完善。

初三數(shù)學(xué)課堂教案(精選篇3)

教學(xué)目標(biāo)

1、在把實(shí)際問(wèn)題轉(zhuǎn)化為一元二次方程的模型的過(guò)程中,形成對(duì)一元二次方程的感性認(rèn)識(shí)。

2、理解一元二次方程的定義,能識(shí)別一元二次方程。

3、知道一元二次方程的一般形式,能熟練地把一元二次方程整理成一般形式,能寫(xiě)出一般形式的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。

重點(diǎn)難點(diǎn)

重點(diǎn):能建立一元二次方程模型,把一元二次方程整理成一般形式。

難點(diǎn):把實(shí)際問(wèn)題轉(zhuǎn)化為一元二次方程的模型。

教學(xué)過(guò)程

(一)創(chuàng)設(shè)情境

前面我們?cè)褜?shí)際問(wèn)題轉(zhuǎn)化成一元一次方程和二元一次方程組的模型,大家已經(jīng)感受到了方程是刻畫(huà)現(xiàn)實(shí)世界數(shù)量關(guān)系的工具。本節(jié)課我們將繼續(xù)進(jìn)行建立方程模型的探究。

1、展示課本P.2問(wèn)題一

引導(dǎo)學(xué)生設(shè)人行道寬度為xm,表示草坪邊長(zhǎng)為35-2xm,找等量關(guān)系,列出方程。

(35-2x)2=900①

2、展示課本P.2問(wèn)題二

引導(dǎo)思考:小明與小亮第一次相遇以后要再次相遇,他們走的路程有何關(guān)系怎樣用他們?cè)俅蜗嘤龅臅r(shí)間表示他們各自行駛的路程

通過(guò)思考上述問(wèn)題,引導(dǎo)學(xué)生設(shè)經(jīng)過(guò)ts小明與小亮相遇,用s表示他們各自行駛的路程,利用路程方面的等量關(guān)系列出方程

2t+×0.01t2=3t②

3、能把①,②化成右邊為0,而左邊是只含有一個(gè)未知數(shù)的二次多項(xiàng)式的形式嗎讓學(xué)生展開(kāi)討論,并引導(dǎo)學(xué)生把①,②化成下列形式:

4x2-140x+32③

0.01t2-2t=0④

(二)探究新知

1、觀察上述方程③和④,啟發(fā)學(xué)生歸納得出:

如果一個(gè)方程通過(guò)移項(xiàng)可以使右邊為0,而左邊是只含有一個(gè)未知數(shù)的二次多項(xiàng)式,那么這樣的方程叫作一元二次方程,它的一般形式是:

ax2+bx+c=0,(a,b,c是已知數(shù)且a≠0),

其中a,b,c分別叫作二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)。

2、讓學(xué)生指出方程③,④中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。

(三)講解例題

例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。

[解]去括號(hào),得3x2+5x-12=x2+4x+4,

化簡(jiǎn),得2x2+x-16=0。

二次項(xiàng)系數(shù)是2,一次項(xiàng)系數(shù)是1,常數(shù)項(xiàng)是-16。

點(diǎn)評(píng):一元二次方程的一般形式ax2+bx+c=0(a≠0)具有兩個(gè)特征:一是方程的右邊為0,二是左邊二次項(xiàng)系數(shù)不能為0。此外要使學(xué)生認(rèn)識(shí)到:二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)都是包括符號(hào)的。

例2:下列方程,哪些是一元一次方程哪些是一元二次方程

(1)2x+3=5x-2;(2)x2=25;

(3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。

[解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。

點(diǎn)評(píng):通過(guò)一元一次方程與一元二次方程的比較,使學(xué)生深刻理解一元二次方程的意義。

(四)應(yīng)用新知

課本P.4,練習(xí)第3題,

(五)課堂小結(jié)

1、一元二次方程的顯著特征是:只有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是2。

2、一元二次方程的一般形式為:ax2+bx+c=0(a≠0),一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)都是根據(jù)一般形式確定的。

3、在把實(shí)際問(wèn)題轉(zhuǎn)化為一元二次方程模型的過(guò)程中,體會(huì)學(xué)習(xí)一元二次方程的必要性和重要性。

(六)思考與拓展

當(dāng)常數(shù)a,b,c滿足什么條件時(shí),方程(a-1)x2-bx+c=0是一元二次方程這時(shí)方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)分別是什么當(dāng)常數(shù)a,b,c滿足什么條件時(shí),方程(a-1)x2-bx+c=0是一元一次方程

當(dāng)a≠1時(shí)是一元二次方程,這時(shí)方程的二次項(xiàng)系數(shù)是a-1,一次項(xiàng)系數(shù)是-b;當(dāng)a=1,b≠0時(shí)是一元一次方程。

布置作業(yè)

課本習(xí)題1.1中A組第1,2,3題。

教學(xué)后記:

初三數(shù)學(xué)課堂教案(精選篇4)

學(xué)習(xí)目標(biāo)

1.了解圓周角的概念.

2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.

3.理解圓周角定理的推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.

4.熟練掌握?qǐng)A周角的定理及其推理的靈活運(yùn)用.

設(shè)置情景,給出圓周角概念,探究這些圓周角與圓心角的關(guān)系,運(yùn)用數(shù)學(xué)分類(lèi)思想給予邏輯證明定理,得出推導(dǎo),讓學(xué)生活動(dòng)證明定理推論的正確性,最后運(yùn)用定理及其推導(dǎo)解決一些實(shí)際問(wèn)題

學(xué)習(xí)過(guò)程

一、溫故知新:

(學(xué)生活動(dòng))同學(xué)們口答下面兩個(gè)問(wèn)題.

1.什么叫圓心角

2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢

二、自主學(xué)習(xí):

自學(xué)教材P90---P93,思考下列問(wèn)題:

1、什么叫圓周角圓周角的兩個(gè)特征:。

2、在下面空里作一個(gè)圓,在同一弧上作一些圓心角及圓周角。通過(guò)圓周角的概念和度量的方法回答下面的問(wèn)題.

(1)一個(gè)弧上所對(duì)的圓周角的個(gè)數(shù)有多少個(gè)

(2).同弧所對(duì)的圓周角的度數(shù)是否發(fā)生變化

(3).同弧上的圓周角與圓心角有什么關(guān)系

3、默寫(xiě)圓周角定理及推論并證明。

4、能去掉同圓或等圓嗎若把同弧或等弧改成同弦或等弦性質(zhì)成立嗎

5、教材92頁(yè)思考在同圓或等圓中,如果兩個(gè)圓周角相等,它們所對(duì)的弧一定相等嗎為什么

三、典型例題:

例1、(教材93頁(yè)例2)如圖,⊙O的直徑AB為10cm,弦AC為6cm,,∠ACB的平分線交⊙O于D,求BC、AD、BD的長(zhǎng)。

例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到C,使AC=AB,BD與CD的大小有什么關(guān)系為什么

四、鞏固練習(xí):

1、(教材P93練習(xí)1)

解:

2、(教材P93練習(xí)2)

3、(教材P93練習(xí)3)

證明:

4、(教材P95習(xí)題24.1第9題)

五、總結(jié)反思:

達(dá)標(biāo)檢測(cè)

1.如圖1,A、B、C三點(diǎn)在⊙O上,∠AOC=100°,則∠ABC等于().

A.140°B.110°C.120°D.130°

(1)(2)(3)

2.如圖2,∠1、∠2、∠3、∠4的大小關(guān)系是()

A.∠4∠1∠2∠3B.∠4∠1=∠3∠2

C.∠4∠1∠3∠2D.∠4∠1∠3=∠2

3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則∠BCD等于()

A.100°B.110°C.120°D.130°

4.半徑為2a的⊙O中,弦AB的長(zhǎng)為2a,則弦AB所對(duì)的圓周角的度數(shù)是________.

5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點(diǎn),則∠1+∠2=_______.

(4)(5)

6.(中考題)如圖5,于,若,則

7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長(zhǎng)AB.

拓展創(chuàng)新

1.如圖,已知AB=AC,∠APC=60°

(1)求證:△ABC是等邊三角形.

(2)若BC=4cm,求⊙O的面積.

3、教材P95習(xí)題24.1第12、13題。

布置作業(yè)教材P95習(xí)題24.1第10、11題。

初三數(shù)學(xué)課堂教案(精選篇5)

教材內(nèi)容

1.本單元教學(xué)的主要內(nèi)容:

二次根式的概念;二次根式的加減;二次根式的乘除;最簡(jiǎn)二次根式.

2.本單元在教材中的地位和作用:

二次根式是在學(xué)完了八年級(jí)下冊(cè)第十七章《反比例正函數(shù)》、第十八章《勾股定理及其應(yīng)用》等內(nèi)容的基礎(chǔ)之上繼續(xù)學(xué)習(xí)的,它也是今后學(xué)習(xí)其他數(shù)學(xué)知識(shí)的基礎(chǔ).

教學(xué)目標(biāo)

1.知識(shí)與技能

(1)理解二次根式的概念.

(2)理解(a≥0)是一個(gè)非負(fù)數(shù),()2=a(a≥0),=a(a≥0).

(3)掌握?=(a≥0,b≥0),=?;

=(a≥0,b0),=(a≥0,b0).

(4)了解最簡(jiǎn)二次根式的概念并靈活運(yùn)用它們對(duì)二次根式進(jìn)行加減.

2.過(guò)程與方法

(1)先提出問(wèn)題,讓學(xué)生探討、分析問(wèn)題,師生共同歸納,得出概念.再對(duì)概念的內(nèi)涵進(jìn)行分析,得出幾個(gè)重要結(jié)論,并運(yùn)用這些重要結(jié)論進(jìn)行二次根式的計(jì)算和化簡(jiǎn).

(2)用具體數(shù)據(jù)探究規(guī)律,用不完全歸納法得出二次根式的乘(除)法規(guī)定,并運(yùn)用規(guī)定進(jìn)行計(jì)算.

(3)利用逆向思維,得出二次根式的乘(除)法規(guī)定的逆向等式并運(yùn)用它進(jìn)行化簡(jiǎn).

(4)通過(guò)分析前面的計(jì)算和化簡(jiǎn)結(jié)果,抓住它們的共同特點(diǎn),給出最簡(jiǎn)二次根式的概念.利用最簡(jiǎn)二次根式的概念,來(lái)對(duì)相同的二次根式進(jìn)行合并,達(dá)到對(duì)二次根式進(jìn)行計(jì)算和化簡(jiǎn)的目的.

3.情感、態(tài)度與價(jià)值觀

通過(guò)本單元的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡(jiǎn)的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,經(jīng)過(guò)探索二次根式的重要結(jié)論,二次根式的乘除規(guī)定,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問(wèn)題的能力.

教學(xué)重點(diǎn)

1.二次根式(a≥0)的內(nèi)涵.(a≥0)是一個(gè)非負(fù)數(shù);()2=a(a≥0);=a(a≥0)及其運(yùn)用.

2.二次根式乘除法的規(guī)定及其運(yùn)用.

3.最簡(jiǎn)二次根式的概念.

4.二次根式的加減運(yùn)算.

教學(xué)難點(diǎn)

1.對(duì)(a≥0)是一個(gè)非負(fù)數(shù)的理解;對(duì)等式()2=a(a≥0)及=a(a≥0)的理解及應(yīng)用.

2.二次根式的乘法、除法的條件限制.

3.利用最簡(jiǎn)二次根式的概念把一個(gè)二次根式化成最簡(jiǎn)二次根式.

教學(xué)關(guān)鍵

1.潛移默化地培養(yǎng)學(xué)生從具體到一般的推理能力,突出重點(diǎn),突破難點(diǎn).

2.培養(yǎng)學(xué)生利用二次根式的規(guī)定和重要結(jié)論進(jìn)行準(zhǔn)確計(jì)算的能力,培養(yǎng)學(xué)生一絲不茍的科學(xué)精神.

單元課時(shí)劃分

本單元教學(xué)時(shí)間約需11課時(shí),具體分配如下:

21.1二次根式3課時(shí)

21.2二次根式的乘法3課時(shí)

21.3二次根式的加減3課時(shí)

教學(xué)活動(dòng)、習(xí)題課、小結(jié)2課時(shí)

21.1二次根式

第一課時(shí)

教學(xué)內(nèi)容

二次根式的概念及其運(yùn)用

教學(xué)目標(biāo)

理解二次根式的概念,并利用(a≥0)的意義解答具體題目.

提出問(wèn)題,根據(jù)問(wèn)題給出概念,應(yīng)用概念解決實(shí)際問(wèn)題.

教學(xué)重難點(diǎn)關(guān)鍵

1.重點(diǎn):形如(a≥0)的式子叫做二次根式的概念;

2.難點(diǎn)與關(guān)鍵:利用“(a≥0)”解決具體問(wèn)題.

教學(xué)過(guò)程

一、復(fù)習(xí)引入

(學(xué)生活動(dòng))請(qǐng)同學(xué)們獨(dú)立完成下列三個(gè)問(wèn)題:

問(wèn)題1:已知反比例函數(shù)y=,那么它的圖象在第一象限橫、縱坐標(biāo)相等的點(diǎn)的坐標(biāo)是___________.

問(wèn)題2:如圖,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB邊的長(zhǎng)是__________.

問(wèn)題3:甲射擊6次,各次擊中的環(huán)數(shù)如下:8、7、9、9、7、8,那么甲這次射擊的方差是S2,那么S=_________.

老師點(diǎn)評(píng):

問(wèn)題1:橫、縱坐標(biāo)相等,即x=y,所以x2=3.因?yàn)辄c(diǎn)在第一象限,所以x=,所以所求點(diǎn)的坐標(biāo)(,).

問(wèn)題2:由勾股定理得AB=

問(wèn)題3:由方差的概念得S=.

二、探索新知

很明顯、、,都是一些正數(shù)的算術(shù)平方根.像這樣一些正數(shù)的算術(shù)平方根的式子,我們就把它稱二次根式.因此,一般地,我們把形如(a≥0)的式子叫做二次根式,“”稱為二次根號(hào).

(學(xué)生活動(dòng))議一議:

1.-1有算術(shù)平方根嗎

2.0的算術(shù)平方根是多少

3.當(dāng)a0,有意義嗎

老師點(diǎn)評(píng):(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x0)、、、-、、(x≥0,y≥0).

分析:二次根式應(yīng)滿足兩個(gè)條件:第一,有二次根號(hào)“”;第二,被開(kāi)方數(shù)是正數(shù)或0.

解:二次根式有:、(x0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.

例2.當(dāng)x是多少時(shí),在實(shí)數(shù)范圍內(nèi)有意義

分析:由二次根式的定義可知,被開(kāi)方數(shù)一定要大于或等于0,所以3x-1≥0,才能有意義.

解:由3x-1≥0,得:x≥

當(dāng)x≥時(shí),在實(shí)數(shù)范圍內(nèi)有意義.

三、鞏固練習(xí)

教材P練習(xí)1、2、3.

四、應(yīng)用拓展

例3.當(dāng)x是多少時(shí),+在實(shí)數(shù)范圍內(nèi)有意義

分析:要使+在實(shí)數(shù)范圍內(nèi)有意義,必須同時(shí)滿足中的≥0和中的x+1≠0.

解:依題意,得

由①得:x≥-

由②得:x≠-1

當(dāng)x≥-且x≠-1時(shí),+在實(shí)數(shù)范圍內(nèi)有意義.

例4(1)已知y=++5,求的值.(答案:2)

(2)若+=0,求a2023+b2023的值.(答案:)

五、歸納小結(jié)(學(xué)生活動(dòng),老師點(diǎn)評(píng))

本節(jié)課要掌握:

1.形如(a≥0)的式子叫做二次根式,“”稱為二次根號(hào).

2.要使二次根式在實(shí)數(shù)范圍內(nèi)有意義,必須滿足被開(kāi)方數(shù)是非負(fù)數(shù).

六、布置作業(yè)

1.教材P8復(fù)習(xí)鞏固1、綜合應(yīng)用5.

2.選用課時(shí)作業(yè)設(shè)計(jì).

3.課后作業(yè):《同步訓(xùn)練》

第一課時(shí)作業(yè)設(shè)計(jì)

一、選擇題1.下列式子中,是二次根式的是()

A.-B.C.D.x

2.下列式子中,不是二次根式的是()

A.B.C.D.

3.已知一個(gè)正方形的面積是5,那么它的邊長(zhǎng)是()

A.5B.C.D.以上皆不對(duì)

二、填空題

1.形如________的式子叫做二次根式.

2.面積為a的正方形的邊長(zhǎng)為_(kāi)_______.

3.負(fù)數(shù)________平方根.

三、綜合提高題

1.某工廠要制作一批體積為1m3的產(chǎn)品包裝盒,其高為0.2m,按設(shè)計(jì)需要,底面應(yīng)做成正方形,試問(wèn)底面邊長(zhǎng)應(yīng)是多少

2.當(dāng)x是多少時(shí),+x2在實(shí)數(shù)范圍內(nèi)有意義

3.若+有意義,則=_______.

4.使式子有意義的未知數(shù)x有()個(gè).

A.0B.1C.2D.無(wú)數(shù)

5.已知a、b為實(shí)數(shù),且+2=b+4,求a、b的值.

第一課時(shí)作業(yè)設(shè)計(jì)答案:

一、1.A2.D3.B

二、1.(a≥0)2.3.沒(méi)有

三、1.設(shè)底面邊長(zhǎng)為x,則0.2x2=1,解答:x=.

2.依題意得:,

∴當(dāng)x-且x≠0時(shí),+x2在實(shí)數(shù)范圍內(nèi)沒(méi)有意義.

3.

4.B

5.a=5,b=-4

初三數(shù)學(xué)課堂教案(精選篇6)

教學(xué)內(nèi)容

1.(a≥0)是一個(gè)非負(fù)數(shù);

2.()2=a(a≥0).

教學(xué)目標(biāo)

理解(a≥0)是一個(gè)非負(fù)數(shù)和()2=a(a≥0),并利用它們進(jìn)行計(jì)算和化簡(jiǎn).

通過(guò)復(fù)習(xí)二次根式的概念,用邏輯推理的方法推出(a≥0)是一個(gè)非負(fù)數(shù),用具體數(shù)據(jù)結(jié)合算術(shù)平方根的意義導(dǎo)出()2=a(a≥0);最后運(yùn)用結(jié)論嚴(yán)謹(jǐn)解題.

教學(xué)重難點(diǎn)關(guān)鍵

1.重點(diǎn):(a≥0)是一個(gè)非負(fù)數(shù);()2=a(a≥0)及其運(yùn)用.

2.難點(diǎn)、關(guān)鍵:用分類(lèi)思想的方法導(dǎo)出(a≥0)是一個(gè)非負(fù)數(shù);用探究的方法導(dǎo)出()2=a(a≥0).

教學(xué)過(guò)程

一、復(fù)習(xí)引入

(學(xué)生活動(dòng))口答

1.什么叫二次根式

2.當(dāng)a≥0時(shí),叫什么當(dāng)a0時(shí),有意義嗎

老師點(diǎn)評(píng)(略).

二、探究新知

議一議:(學(xué)生分組討論,提問(wèn)解答)

(a≥0)是一個(gè)什么數(shù)呢

老師點(diǎn)評(píng):根據(jù)學(xué)生討論和上面的練習(xí),我們可以得出

(a≥0)是一個(gè)非負(fù)數(shù).

做一做:根據(jù)算術(shù)平方根的意義填空:

()2=_______;()2=_______;()2=______;()2=_______;

()2=______;()2=_______;()2=_______.

老師點(diǎn)評(píng):是4的算術(shù)平方根,根據(jù)算術(shù)平方根的意義,是一個(gè)平方等于4的非負(fù)數(shù),因此有()2=4.

同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以

()2=a(a≥0)

例1計(jì)算

1.()22.(3)23.()24.()2

分析:我們可以直接利用()2=a(a≥0)的結(jié)論解題.

解:()2=,(3)2=32?()2=32?5=45,

()2=,()2=.

三、鞏固練習(xí)

計(jì)算下列各式的值:

()2()2()2()2(4)2

四、應(yīng)用拓展

例2計(jì)算

1.()2(x≥0)2.()23.()2

4.()2

分析:(1)因?yàn)閤≥0,所以x+1(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

(4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.

所以上面的4題都可以運(yùn)用()2=a(a≥0)的重要結(jié)論解題.

解:(1)因?yàn)閤≥0,所以x+10

()2=x+1

(2)∵a2≥0,∴()2=a2

(3)∵a2+2a+1=(a+1)2

又∵(a+1)2≥0,∴a2+2a+1≥0,∴=a2+2a+1

(4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2

又∵(2x-3)2≥0

∴4x2-12x+9≥0,∴()2=4x2-12x+9

例3在實(shí)數(shù)范圍內(nèi)分解下列因式:

(1)x2-3(2)x4-4(3)2x2-3

分析:(略)

五、歸納小結(jié)

本節(jié)課應(yīng)掌握:

1.(a≥0)是一個(gè)非負(fù)數(shù);

2.()2=a(a≥0);反之:a=()2(a≥0).

六、布置作業(yè)

1.教材P8復(fù)習(xí)鞏固2.(1)、(2)P97.

2.選用課時(shí)作業(yè)設(shè)計(jì).

3.課后作業(yè):《同步訓(xùn)練》

初三數(shù)學(xué)課堂教案(精選篇7)

理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問(wèn)題.

提出問(wèn)題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程.

重點(diǎn)

運(yùn)用開(kāi)平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次——轉(zhuǎn)化的數(shù)學(xué)思想.

難點(diǎn)

通過(guò)根據(jù)平方根的意義解形如x2=n的方程,將知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復(fù)習(xí)引入

學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題.

問(wèn)題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據(jù)完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

問(wèn)題2:目前我們都學(xué)過(guò)哪些方程二元怎樣轉(zhuǎn)化成一元一元二次方程與一元一次方程有什么不同二次如何轉(zhuǎn)化成一次怎樣降次以前學(xué)過(guò)哪些降次的方法

二、探索新知

上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開(kāi)平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開(kāi)平方的方法求解呢

(學(xué)生分組討論)

老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開(kāi)平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10m2提高到14.4m2,求每年人均住房面積增長(zhǎng)率.

分析:設(shè)每年人均住房面積增長(zhǎng)率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2

解:設(shè)每年人均住房面積增長(zhǎng)率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開(kāi)平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因?yàn)槊磕耆司》棵娣e的增長(zhǎng)率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.

所以,每年人均住房面積增長(zhǎng)率應(yīng)為20%.

(學(xué)生小結(jié))老師引導(dǎo)提問(wèn):解一元二次方程,它們的共同特點(diǎn)是什么

共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.

三、鞏固練習(xí)

教材第6頁(yè)練習(xí).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:由應(yīng)用直接開(kāi)平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開(kāi)平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達(dá)到降次轉(zhuǎn)化之目的.若p0則方程無(wú)解.

五、作業(yè)布置

教材第16頁(yè)復(fù)習(xí)鞏固1.第2課時(shí)配方法的基本形式

理解間接即通過(guò)變形運(yùn)用開(kāi)平方法降次解方程,并能熟練應(yīng)用它解決一些具體問(wèn)題.

通過(guò)復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.

重點(diǎn)

講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.

難點(diǎn)

將不可直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧.

一、復(fù)習(xí)引入

(學(xué)生活動(dòng))請(qǐng)同學(xué)們解下列方程:

(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7

老師點(diǎn)評(píng):上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎

二、探索新知

列出下面問(wèn)題的方程并回答:

(1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與剛才解題的方程有什么不同呢

(2)能否直接用上面前三個(gè)方程的解法呢

問(wèn)題:要使一塊矩形場(chǎng)地的長(zhǎng)比寬多6m,并且面積為16m2,求場(chǎng)地的長(zhǎng)和寬各是多少

(1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與前面講的三道題不同之處是:前三個(gè)左邊是含有x的完全平方式而后二個(gè)不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我們就應(yīng)該設(shè)法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來(lái)講如何轉(zhuǎn)化:

x2+6x-16=0移項(xiàng)→x2+6x=16

兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9

左邊寫(xiě)成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以驗(yàn)證:x1=2,x2=-8都是方程的根,但場(chǎng)地的寬不能是負(fù)值,所以場(chǎng)地的寬為2m,長(zhǎng)為8m.

像上面的解題方法,通過(guò)配成完全平方形式來(lái)解一元二次方程的方法,叫配方法.

可以看出,配方法是為了降次,把一個(gè)一元二次方程轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.

例1用配方法解下列關(guān)于x的方程:

(1)x2-8x+1=0(2)x2-2x-12=0

分析:(1)顯然方程的左邊不是一個(gè)完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.

解:略.

三、鞏固練習(xí)

教材第9頁(yè)練習(xí)1,2.(1)(2).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:

左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負(fù)數(shù),可以直接降次解方程的方程.

五、作業(yè)布置

教材第17頁(yè)復(fù)習(xí)鞏固2,3.(1)(2).第3課時(shí)配方法的靈活運(yùn)用

了解配方法的概念,掌握運(yùn)用配方法解一元二次方程的步驟.

通過(guò)復(fù)習(xí)上一節(jié)課的解題方法,給出配方法的概念,然后運(yùn)用配方法解決一些具體題目.

重點(diǎn)

講清配方法的解題步驟.

難點(diǎn)

對(duì)于用配方法解二次項(xiàng)系數(shù)為1的一元二次方程,通常把常數(shù)項(xiàng)移到方程右邊后,兩邊加上的常數(shù)是一次項(xiàng)系數(shù)一半的平方;對(duì)于二次項(xiàng)系數(shù)不為1的一元二次方程,要先化二次項(xiàng)系數(shù)為1,再用配方法求解.

一、復(fù)習(xí)引入

(學(xué)生活動(dòng))解下列方程:

(1)x2-4x+7=0(2)2x2-8x+1=0

老師點(diǎn)評(píng):我們上一節(jié)課,已經(jīng)學(xué)習(xí)了如何解左邊不含有x的完全平方形式的一元二次方程以及不可以直接開(kāi)方降次解方程的轉(zhuǎn)化問(wèn)題,那么這兩道題也可以用上面的方法進(jìn)行解題.

解:略.(2)與(1)有何關(guān)聯(lián)

二、探索新知

討論:配方法解一元二次方程的一般步驟:

(1)先將已知方程化為一般形式;

(2)化二次項(xiàng)系數(shù)為1;

(3)常數(shù)項(xiàng)移到右邊;

(4)方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;

(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q0,方程無(wú)實(shí)根.

例1解下列方程:

(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0

分析:我們已經(jīng)介紹了配方法,因此,我們解這些方程就可以用配方法來(lái)完成,即配一個(gè)含有x的完全平方式.

解:略.

三、鞏固練習(xí)

教材第9頁(yè)練習(xí)2.(3)(4)(5)(6).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:

1.配方法的概念及用配方法解一元二次方程的步驟.

2.配方法是解一元二次方程的通法,它的重要性,不僅僅表現(xiàn)在一元二次方程的解法中,也可通過(guò)配方,利用非負(fù)數(shù)的性質(zhì)判斷代數(shù)式的正負(fù)性.在今后學(xué)習(xí)二次函數(shù),到高中學(xué)習(xí)二次曲線時(shí),還將經(jīng)常用到.

五、作業(yè)布置

教材第17頁(yè)復(fù)習(xí)鞏固3.(3)(4).

補(bǔ)充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.

(2)求證:無(wú)論x,y取任何實(shí)數(shù),多項(xiàng)式x2+y2-2x-4y+16的值總是正數(shù).21.2.2公式法

理解一元二次方程求根公式的推導(dǎo)過(guò)程,了解公式法的概念,會(huì)熟練應(yīng)用公式法解一元二次方程.

復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過(guò)程,引入ax2+bx+c=0(a≠0)的求根公式的推導(dǎo),并應(yīng)用公式法解一元二次方程.

重點(diǎn)

求根公式的推導(dǎo)和公式法的應(yīng)用.

難點(diǎn)

一元二次方程求根公式的推導(dǎo).

一、復(fù)習(xí)引入

1.前面我們學(xué)習(xí)過(guò)解一元二次方程的“直接開(kāi)平方法”,比如,方程

(1)x2=4(2)(x-2)2=7

提問(wèn)1這種解法的(理論)依據(jù)是什么

提問(wèn)2這種解法的局限性是什么(只對(duì)那種“平方式等于非負(fù)數(shù)”的特殊二次方程有效,不能實(shí)施于一般形式的二次方程.)

2.面對(duì)這種局限性,怎么辦(使用配方法,把一般形式的二次方程配方成能夠“直接開(kāi)平方”的形式.)

(學(xué)生活動(dòng))用配方法解方程2x2+3=7x

(老師點(diǎn)評(píng))略

總結(jié)用配方法解一元二次方程的步驟(學(xué)生總結(jié),老師點(diǎn)評(píng)).

(1)先將已知方程化為一般形式;

(2)化二次項(xiàng)系數(shù)為1;

(3)常數(shù)項(xiàng)移到右邊;

(4)方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;

(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q0,方程無(wú)實(shí)根.

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0(2)ax2+bx+3=0

如果這個(gè)一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請(qǐng)同學(xué)獨(dú)立完成下面這個(gè)問(wèn)題.

問(wèn)題:已知ax2+bx+c=0(a≠0),試推導(dǎo)它的兩個(gè)根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個(gè)方程一定有解嗎什么情況下有解)

分析:因?yàn)榍懊婢唧w數(shù)字已做得很多,我們現(xiàn)在不妨把a(bǔ),b,c也當(dāng)成一個(gè)具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去.

解:移項(xiàng),得:ax2+bx=-c

二次項(xiàng)系數(shù)化為1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a20,當(dāng)b2-4ac≥0時(shí),b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接開(kāi)平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c而定,因此:

(1)解一元二次方程時(shí),可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac≥0時(shí),將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)這個(gè)式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有兩個(gè)實(shí)數(shù)根.

例1用公式法解下列方程:

(1)2x2-x-1=0(2)x2+1.5=-3x

(3)x2-2x+12=0(4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先應(yīng)把它化為一般形式,然后代入公式即可.

補(bǔ):(5)(x-2)(3x-5)=0

三、鞏固練習(xí)

教材第12頁(yè)練習(xí)1.(1)(3)(5)或(2)(4)(6).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:

(1)求根公式的概念及其推導(dǎo)過(guò)程;

(2)公式法的概念;

(3)應(yīng)用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項(xiàng)要變號(hào),盡量讓a2)找出系數(shù)a,b,c,注意各項(xiàng)的系數(shù)包括符號(hào);3)計(jì)算b2-4ac,若結(jié)果為負(fù)數(shù),方程無(wú)解;4)若結(jié)果為非負(fù)數(shù),代入求根公式,算出結(jié)果.

(4)初步了解一元二次方程根的情況.

五、作業(yè)布置

教材第17頁(yè)習(xí)題4,5.21.2.3因式分解法

掌握用因式分解法解一元二次方程.

通過(guò)復(fù)習(xí)用配方法、公式法解一元二次方程,體會(huì)和探尋用更簡(jiǎn)單的方法——因式分解法解一元二次方程,并應(yīng)用因式分解法解決一些具體問(wèn)題.

重點(diǎn)

用因式分解法解一元二次方程.

難點(diǎn)

讓學(xué)生通過(guò)比較解一元二次方程的多種方法感悟用因式分解法使解題更簡(jiǎn)便.

一、復(fù)習(xí)引入

(學(xué)生活動(dòng))解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)

老師點(diǎn)評(píng):(1)配方法將方程兩邊同除以2后,x前面的系數(shù)應(yīng)為12,12的一半應(yīng)為14,因此,應(yīng)加上(14)2,同時(shí)減去(14)2.(2)直接用公式求解.

二、探索新知

(學(xué)生活動(dòng))請(qǐng)同學(xué)們口答下面各題.

(老師提問(wèn))(1)上面兩個(gè)方程中有沒(méi)有常數(shù)項(xiàng)

(2)等式左邊的各項(xiàng)有沒(méi)有共同因式

(學(xué)生先答,老師解答)上面兩個(gè)方程中都沒(méi)有常數(shù)項(xiàng);左邊都可以因式分解.

因此,上面兩個(gè)方程都可以寫(xiě)成:

(1)x(2x+1)=0(2)3x(x+2)=0

因?yàn)閮蓚€(gè)因式乘積要等于0,至少其中一個(gè)因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實(shí)現(xiàn)降次的)

因此,我們可以發(fā)現(xiàn),上述兩個(gè)方程中,其解法都不是用開(kāi)平方降次,而是先因式分解使方程化為兩個(gè)一次式的乘積等于0的形式,再使這兩個(gè)一次式分別等于0,從而實(shí)現(xiàn)降次,這種解法叫做因式分解法.

例1解方程:

(1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2

思考:使用因式分解法解一元二次方程的條件是什么

解:略(方程一邊為0,另一邊可分解為兩個(gè)一次因式乘積

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論