2022-2023學年安徽省蚌埠市重點中學高三第12次模擬(壓軸卷)數(shù)學試題試卷_第1頁
2022-2023學年安徽省蚌埠市重點中學高三第12次模擬(壓軸卷)數(shù)學試題試卷_第2頁
2022-2023學年安徽省蚌埠市重點中學高三第12次模擬(壓軸卷)數(shù)學試題試卷_第3頁
2022-2023學年安徽省蚌埠市重點中學高三第12次模擬(壓軸卷)數(shù)學試題試卷_第4頁
2022-2023學年安徽省蚌埠市重點中學高三第12次模擬(壓軸卷)數(shù)學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年安徽省蚌埠市重點中學高三第12次模擬(壓軸卷)數(shù)學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知冪函數(shù)的圖象過點,且,,,則,,的大小關系為()A. B. C. D.2.已知斜率為的直線與雙曲線交于兩點,若為線段中點且(為坐標原點),則雙曲線的離心率為()A. B.3 C. D.3.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.4.函數(shù),,的部分圖象如圖所示,則函數(shù)表達式為()A. B.C. D.5.定義在上的偶函數(shù),對,,且,有成立,已知,,,則,,的大小關系為()A. B. C. D.6.已知實數(shù)滿足則的最大值為()A.2 B. C.1 D.07.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術之一,它歷史悠久,風格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內(nèi)部隨機取一個點,則該點不落在任何一個小正方形內(nèi)的概率是()A. B. C. D.8.若復數(shù)()是純虛數(shù),則復數(shù)在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.復數(shù)()A. B. C.0 D.10.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.11.記個兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間12.若的二項展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知中,點是邊的中點,的面積為,則線段的取值范圍是__________.14.已知為偶函數(shù),當時,,則__________.15.在平面直角坐標系中,點的坐標為,點是直線:上位于第一象限內(nèi)的一點.已知以為直徑的圓被直線所截得的弦長為,則點的坐標__________.16.已知橢圓C:1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點P(c,2c)作線段PF1,PF2分別交橢圓C于點A、B,若|PA|=|AF1|,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知為坐標原點,單位圓與角終邊的交點為,過作平行于軸的直線,設與終邊所在直線的交點為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.18.(12分)已知的內(nèi)角的對邊分別為,且滿足.(1)求角的大??;(2)若的面積為,求的周長的最小值.19.(12分)在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)求直線l的普通方程和圓C的直角坐標方程;(2)直線l與圓C交于A,B兩點,點P(2,1),求|PA|?|PB|的值.20.(12分)如圖,在平面直角坐標系中,以軸正半軸為始邊的銳角的終邊與單位圓交于點,且點的縱坐標是.(1)求的值:(2)若以軸正半軸為始邊的鈍角的終邊與單位圓交于點,且點的橫坐標為,求的值.21.(12分)一種游戲的規(guī)則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設拋擲4次的得分為,求變量的分布列和數(shù)學期望.(2)當游戲得分為時,游戲停止,記得分的概率和為.①求;②當時,記,證明:數(shù)列為常數(shù)列,數(shù)列為等比數(shù)列.22.(10分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎題.2、B【解析】

設,代入雙曲線方程相減可得到直線的斜率與中點坐標之間的關系,從而得到的等式,求出離心率.【詳解】,設,則,兩式相減得,∴,.故選:B.【點睛】本題考查求雙曲線的離心率,解題方法是點差法,即出現(xiàn)雙曲線的弦中點坐標時,可設弦兩端點坐標代入雙曲線方程相減后得出弦所在直線斜率與中點坐標之間的關系.3、A【解析】

依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結果。【詳解】因為無窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A。【點睛】本題主要考查無窮等比數(shù)列求和公式的應用。4、A【解析】

根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數(shù)過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導公式,屬于基礎題.5、A【解析】

根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:對,,且,有在上遞增因為定義在上的偶函數(shù)所以在上遞減又因為,,所以故選:A【點睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應用,基礎題.6、B【解析】

作出可行域,平移目標直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經(jīng)過點時,其截距最大,此時最大得,當時,故選:B【點睛】考查線性規(guī)劃,是基礎題.7、D【解析】

由幾何概型可知,概率應為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點睛】本題考查幾何概型的面積公式的應用,屬于基礎題.8、B【解析】

化簡復數(shù),由它是純虛數(shù),求得,從而確定對應的點的坐標.【詳解】是純虛數(shù),則,,,對應點為,在第二象限.故選:B.【點睛】本題考查復數(shù)的除法運算,考查復數(shù)的概念與幾何意義.本題屬于基礎題.9、C【解析】略10、A【解析】

由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,結合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點,,且平面,,的中點為外接球的球心,半徑,外接球表面積.故選:A【點睛】本題考查了由三視圖求幾何體的外接球的表面積,根據(jù)三視圖判斷幾何體的結構特征,利用幾何體的結構特征與數(shù)據(jù)求得外接球的半徑是解答本題的關鍵.11、D【解析】

可判斷函數(shù)為奇函數(shù),先討論當且時的導數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點值分別看作對應常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當且時,.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對應自變量范圍,導數(shù)法研究函數(shù)增減性,數(shù)形結合思想,轉化與化歸思想,屬于難題12、B【解析】

先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設,利用正弦定理,根據(jù),得到①,再利用余弦定理得②,①②平方相加得:,轉化為有解問題求解.【詳解】設,所以,即①由余弦定理得,即②,①②平方相加得:,即,令,設,在上有解,所以,解得,即,故答案為:【點睛】本題主要考查正弦定理和余弦定理在平面幾何中的應用,還考查了運算求解的能力,屬于難題.14、【解析】

由偶函數(shù)的性質(zhì)直接求解即可【詳解】.故答案為【點睛】本題考查函數(shù)的奇偶性,對數(shù)函數(shù)的運算,考查運算求解能力15、【解析】

依題意畫圖,設,根據(jù)圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點間的距離公式即可求出,進而得出點坐標.【詳解】解:依題意畫圖,設以為直徑的圓被直線所截得的弦長為,且,又因為為圓的直徑,則所對的圓周角,則,則為點到直線:的距離.所以,則.又因為點在直線:上,設,則.解得,則.故答案為:【點睛】本題考查了直線與圓的位置關系,考查了兩點間的距離公式,點到直線的距離公式,是基礎題.16、【解析】

根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點A為橢圓上頂點,則有b=c,解出B的坐標即可得到比值.【詳解】因為|PA|=|AF1|,所以點A是線段PF1的中點,又因為點O為線段F1F2的中點,所以OA∥PF2,且|PF2|=2|OA|,因為點P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以OA⊥x軸,則點A為橢圓上頂點,所以|OA|=b,則2b=2c,所以b=c,ac,設B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【點睛】本題考查橢圓的基本性質(zhì),考查直線位置關系的判斷,方程思想,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)根據(jù)題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【詳解】(1)因為,,所以,,所以函數(shù)的最小正周期為.(2)因為,所以,所以,故函數(shù)在區(qū)間上的值域為.【點睛】本題考查正弦型函數(shù)的周期和值域,運用到向量的坐標運算、降冪公式和二倍角的正弦公式,考查化簡和計算能力.18、(1)(2)【解析】

(1)因為,所以,由余弦定理得,化簡得,可得,解得,又因為,所以.(6分)(2)因為,所以,則(當且僅當時,取等號).由(1)得(當且僅當時,取等號),解得.所以(當且僅當時,取等號),所以的周長的最小值為.19、(1)直線的普通方程,圓的直角坐標方程:.(2)【解析】

(1)直接利用轉換關系的應用,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉換.(2)將直線的參數(shù)方程代入圓的直角坐標方程,利用一元二次方程根和系數(shù)關系式即可求解.【詳解】(1)直線l的參數(shù)方程為(t為參數(shù)),轉換為直角坐標方程為x+y﹣3=0.圓C的極坐標方程為ρ2﹣4ρcosθ=3,轉換為直角坐標方程為x2+y2﹣4x﹣3=0.(2)把直線l的參數(shù)方程為(t為參數(shù)),代入圓的直角坐標方程x2+y2﹣4x﹣3=0,得到,所以|PA||PB|=|t1t2|=6.【點睛】本題考查參數(shù)方程極坐標方程和直角坐標方程之間的轉換,一元二次方程根和系數(shù)關系式的應用,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題型.20、(1)(2)【解析】

(1)依題意,任意角的三角函數(shù)的定義可知,,進而求出.在利用余弦的和差公式即可求出.(2)根據(jù)鈍角的終邊與單位圓交于點,且點的橫坐標是,得出,進而得出,利用正弦的和差公式即可求出,結合為銳角,為鈍角,即可得出的值.【詳解】解:因為銳角的終邊與單位圓交于點,點的縱坐標是,所以由任意角的三角函數(shù)的定義可知,.從而.(1)于是.(2)因為鈍角的終邊與單位圓交于點,且點的橫坐標是,所以,從而.于是.因為為銳角,為鈍角,所以從而.【點睛】本題本題考查正弦函數(shù)余弦函數(shù)的定義,考查正弦余弦的兩角和差公式,是基礎題.21、(1)分布列見解析,數(shù)學期望為6;(2)①;②證明見解析【解析】

(1)變量的所有可能取值為4,5,6,7,8,分別求出對應的概率,進而可求出變量的分布列和數(shù)學期望;(2)①得2分只需要拋擲一次正面向上或兩次反面向上,分別求出兩種情況的概率,進而可求得;②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,可知當且時,,結合,可推出,從而可證明數(shù)列為常數(shù)列;結合,可推出,進而可證明數(shù)列為等比數(shù)列.【詳解】(1)變量的所有可能取值為4,5,6,7,8.每次拋擲一次硬幣,正面向上的概率為,反面向上的概率也為,則,.所以變量的分布列為:45678故變量的數(shù)學期望為.(2)①得2分只需要拋擲一次正面向上或兩次反面向上,概率的和為.②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,故且時,有,則時,,所以,故數(shù)列為常數(shù)列;又,,所以數(shù)列為等比數(shù)列.【點睛】本題考查離散型隨機變量的分布列及數(shù)學期望,考查常數(shù)列及等比數(shù)列的證明,考查學生的計算求解能力與推理論證能力,屬于中檔題.22、(I)證明見解析;(II)1【解析】

(I)過D作DE⊥BC于E,連接SE,根據(jù)勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論