版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
英文資料與翻譯Technologiesforelectric,hybridandhydrogenvehicles:ElectricityfromrenewableenergysourcesintransportAbstractThearticleanalysesandcompareselectricityandhydrogenastransportationfuels.Theanalysisincludesaspectssuchastheenergyutilizationfromgridtowheels,vehiclerange(linkedtothephysicalpropertiesoftheonboardstorage),costs,anddurability(particularlyofbatteries).Thearticleconcludesthatitisnotpossibletoidentifyoneoptionasthebestchoicegiventhewiderangeofaspectstoconsiderandthesubstantialuncertainties.Thereisnoclearcutprioritybetweenthemainoptionseelectric,hybridorhydrogen/fuelcelldriveeorwithinthese.Ontheotherhand,theanalysisalsoidentifiesoptionsthatareclearlynotadvantageousintermsofenergyefficiency,e.g.hydrogenininternalcombustionenginesorliquidhydrogen.1.IntroductionUsually,akeyinstrumentinstrategiestopromotesustainabletransportistheintroductionofalternativefuels.Frequently,theprincipalobjectiveofintroducingadifferentenergycarrieristoutiliseitforintroducingrenewableenergysourcesintothetransportsectorand/orimprovingenergysecuritybyreducingthedependenceonoil.Inthiscontext,themainoptionsasregardsenergycarriersforrenewableenergysourcesareelectricity,hydrogen,bio-fuelsandbiogas.Regardlessoftheirrespectivestrengthsandweaknesses,asenergycarriersinthetransportsector,electricityandhydrogenhaveincommonthestrengthsofhavinghighflexibilitywithrespecttoprimaryenergysourcesandthepossibilityofselectingbetweenseveralrenewableenergysources.Incontrast,liquidbio-fuelsandbiogas,whicharefrequentlyseenasmoreimmediatelyapplicablealternativefueloptionsintheshortterm,areinpractice(withacceptableconversionefficiencies)confinedtoaquitelimitedresourcebaseofbiomass.Sincetheseenergycarrierscanrelativelyeasilybegeneratedfromfossilfuels,thelimitedresourcebaseposesarealisticrisk,forinstanceincasethedemandforbio-fuels/biogasoutstripstheproductioncapacity.Thechoicebetweenhydrogenandelectricityasfuels,andbetweentheirdifferentpaths,isacomplexevaluationofvariousaspects,alsoinvolvingassumptionsonthelong-termdevelopmentoftechnologieswithverydifferentdevelopmenttrends,asseentoday.Theevaluationisfurthercomplicatedbythefactthattheelectricity/hydrogenformspartoftheelectricitysupplysystemandcanonlyfullybeanalysedinthiscontext.Thisarticleillustratessomeoftheproblemsinthiscontext,highlightingissuesofparticularimportance:energyefficiency,range,costs,anddurability,amongothers.Itconcentratesonthevehicleandthegenerationoffuels,anddoesnotincludesystemsanalysisoftheelectricitysystem.Insteadthearticleintendstoraisevehicle/fuel-relatedissuesthataresignificantforsuchananalysis.Anoverallconclusionisthatitisnotpossibletomakesimplerecommendationsonthechoicebetweenelectric,hybridandhydrogenvehiclesepartlybecauseofthedifficultiesinassessingthedifferentdimensions,andpartlybecauseconsiderablevariationsexistbetweenthedifferentpathswithinthemainoptions.2.OverviewoffuelcycleofelectricityandhydrogenElectricitymaybeusedeitherdirectlyasfuelinbatteryelectricvehiclesorplug-inhybrid-electricvehicles,orbeconvertedintohydrogenandappliedininternalcombustionengine-basedvehiclesorinfuelcellvehicles.Acommonfeature,exceptfortheinternalcombustionenginevehicle,isthattheycanbeperceivedasvariationsofelectricdrive,inwhichtheelectricityiseithersuppliedfromthegridviaabattery(orsimilarelectricstoragetechnologies)orgeneratedonboardeitherinaninternalcombustionengine(theplug-inhybrid)orinafuelcell.Ifelectricityisusedasfuelinbattery-electricvehicles(BEV),thisistypicallysuppliedfromthepublicgrid,storedonboardthevehicle(typicallyinbatteries)andusedinelectricmotordrives.Inprinciple,therechargingcanbeachievedthoughexistingsockets,andinthiscasetheinfrastructureisveryinexpensive.Thisis,however,asolutionwhichimposesmanyrestrictionsontheplaceandspeedoftherecharging.Hence,inpractice,morerequirementsandcostswillbelinkedtothisoption,particularlyiffastrechargeisrequiredandiftheelectricityconsumptionneedstobemonitored.Thisisusuallyaveryenergyefficientoption.Hybrid-electricvehicles(HEV)arecharacterisedbyhavingbothelectricmotorsandinternalcombustionenginesinitsdrivesystem(Graham,2001;Duvall,2002;Gage,2003;LipmanandDelucchi,2003;Boschert,2006).Theplug-inhybridelectricvehicle(PHEV)isahybridwhichcanberechargedfromthegrid.ItcanbeperceivedasaBEVsupplementedwithaninternalcombustionengine-baseddrive.Infact,thePHEVcategorycontainsawiderangeofdifferentoptions,definedbyfactorssuchas:impactsofdifferenthydrogenoptions,butnormallyeventhemostefficienthydrogenpathwayshavegreaterlossesthantheleastefficientoptionbasedonelectricityasfuel.Ontheotherhand,thevehiclerangeisusuallyconsiderablehigherforhydrogenthanforBEVsandthiswillinallprobabilitycontinuetobethecaseinthefuture.Thisislinkedtothecostsandphysicalpropertiesandthetwostoragemediumsasdescribedindetailbelow(Amos,1998;Kalhammeretal.,2007).Arangeofdifferentoptionscanbeidentifiedwithregardtoonboardhydrogenstorage.Storageintheformofliquidhydrogen(LH2)canachieverangesinthesameorderasconventionalvehicles,butthisoptionhasextremelypoorenergyefficiencyandotherweaknessesinaddition.Fromanenergyefficiencyviewpoint,themostattractivesolutionsatpresentareprobablycompressedgastanks(CH2storage)andmetalhydridestorages,butthelatterofthesestillrequiresconsiderabledevelopmentinordertoreduceweightandcosts.Infrastructurerequirementsandcostsconstituteamajordrawbackinconjunctionwithhydrogen.Inthisrespect,hydrogenundoubtedlyinvolvesthegreatestnumberofobstaclesofallalternativefuels.Thisweaknessincombinationwiththecurrentlyshorterrangesinconnectionwithhydrogenvehicleshaveresultedintheexplorationofoptionsinwhichliquidfuels(gasoline,diesel,methanoletc.)areconvertedintohydrogenonboardthevehicle.Thissolutioninvolvesconsiderableenergylossesandinaddition,manytechnicalproblemsaswellasproblemsofreducingthevolume.Hydrogencanbegeneratedthroughotherpathsthanviaelectricity,notably(inarenewableenergycontext)byconversionofbiomassthroughgasificationorotherprocesses(Padro′andPutsche,1999;S?rensenetal.,2001;Ogdenetal.,2004).Itmayalsobeproducedfromvariousfossilfuels,particularlynaturalgasorcoal.Fromasustainabilitypointofview,however,thereislittlepointinshiftingtohydrogenifthisisbasedonfossilfuels,eveninthelongterm.HydrogenproducedbyelectrolysisbasedonelectricityfromthepresentDanishorEuropeanelectricgridandusedasvehiclefuelgenerallyhasmuchhigherenergyconsumptionandCO2emissionsthanthepresentfuelsusedforthesameapplications.Thenon-grid-connectedHEVisgenerallynotusedinordertoshiftfuelbutonlytoimprovetheenergyefficiencyofthevehicle.Inprinciple,itcanuseanyliquidorgaseousfuel,includinghydrogen,bio-fuels,biogasandothers.Seenfromtoday’spointofview,thisisnotaverylikelyoption.However,thismaychangeinthelongertermifandwhenthehybriddrivetraintypeisdevelopedintoastate-of-the-arttechnology,particularlyifthefuelcelltechnologyisnotsuccessfulinthelongtermoronlyachievesalimitedapplication.Thishybridtypeisfrequentlyseenasacompetitortothefuelcellandasaveryefficientdrivesysteminthelongterm(Edwardsetal.,2007).Whileitwillprobablynotreachthesameenergyefficiencylevelsasfuelcelldrivesystems,itwillnotneedabreakwiththepresentautomobiletechnologies,fuelsandinfrastructure.Itislikelytoremainalower-costoptioncomparedtofuelcellsunlessthelatterexperiencesalarge-scalebreakthrough.3.Keydilemmasandtrade-offsThechoicebetweendifferenttechnologiesandenergycarriersandrecommendationsinthisconnectionisverycomplicatedandassociatedwithgreatuncertainty,formanyreasons.Boththepotentialsolutionsandtheconsiderationstobetakenintoaccountarewide-rangingandheterogeneousincharacter,furthercomplicatedbytheuncertaintiesinconjunctionwiththefuturedevelopmentoftechnologiesnotyetonthemarket.Moreover,thetechnologiesinquestiongenerallyhavedevelopmentalandmarket-relatedhurdlestobesurmountedforwidespreadapplication.Theprincipalconsiderationsintheassessmentofalternativefuelsincludethefollowing(Kemptonetal.,2001;Kalhammeretal.,2007):directandindirectenergyandenvironmentalimpacts(includingimpactsthroughenergyandtransportsystems);vehiclerangebetweenrefueling;weightandvolumeofonboardenergystorage,fuelcellsandthedrivesystemingeneral;costsofpurchaseandoperationofvehicleandfuels;durabilityofkeycomponents,particularlythosewithhighcosts(notablybatteryandfuelcell);demandstoinfrastructureforfuelsandtechnicalbackup;needforabreakwiththepresentdevelopmentoftechnologiesandfuels;flexibility,notleastwithrespecttoenergyresources.Inthecontextofthisarticle,comparingdifferentapplicationsofelectricityinvehicles,itisappropriatetolimitthecomparisontothespecificelectricityconsumptionperkmoffthegridebeitfordirectsupplyofthevehicleorthroughconversionintohydrogen.Theenergyefficiencyisstillacrucialindicatorevenwithrenewableenergyreplacingfossilfuels.Renewableenergyisnotlikelytobecomeanunlimitedandunproblematicsourcewithoutnegativeimpactsintheformofcosts,landrequirements,environmentalandvisualimpactsetc.Onthisbackground,keytrade-offscanbeoutlinedtoillustratetheevaluationandchoiceofdifferenttechnologies.Onecrucialtrade-offisbetweenenergyefficiency/CO2emissions(asrepresentedbythespecificelectricityconsumption)ontheonehandandvehiclerangeontheother.Anotherisbetweencostsontheonesideandeitherrangeorenergyefficiency.ontheother.Afurtherkeytrade-offisbetweenflexibilitytowardsenergyresourcesandperspectivesofcoveringasubstantialshareofthetransportsectorenergydemand(inprinciple100%)ontheonesideandtherequirementstoandcostsofinfrastructureontheother,andinthatconnection,theneedforabreakwiththedevelopment.Inrelationtothelatter,thereisthevitalchicken-and-eggproblem,inparticularwithregardtohydrogenandfuelcells,asthemarketforvehiclesandtherefuellinginfrastructurearedependantoneachother.4.ComparisonoftheenergyefficiencyofelectricityandhydrogenSincethearticlecomparesdifferentutilisationsofelectricityasfuelinvehicles,aconvenientenergychainappliedtomeasuretheenergyefficiencyrunsbetweentheelectricitysupplyoffthegridandthedrivingwheelsofthevehicle.Forelectricityusedinelectricvehicles,themainlossesinvolvedareconversionlossesintheelectricmotor,lossesinthebatteryandrecharginglosses.Thefollowingassumptionshavebeenused(HorstmannandJ?rgensen,1997;Kalhammeretal.,2000;GainesandCuenca,2000;DelucchiandLipman,2001;Kemptonetal.,2001;Delucchi,2003;LipmanandDelucchi,2003;Duvall,2004;Horstmann,2005;Kalhammeretal.,2007):conversionefficiencyelectricmotors:80e85%forpresentmotorsand90e92%orevenhigherinfutureadvancedelectricvehicles;efficiencyofbatteries:70e85%(dependingonthebatterytypeandnotonlyonthedevelopmentstageandhencenotnecessarilydeveloping);rechargingefficiency:efficienciesintheorderof95%;regenerationofbrakinglosses,assumingabout70e75%ofbrakinglossestoberecoveredandresultinginimprovementsofthetotalaveragevehicleenergyefficiencyby15e20%.Inadditiontothegainsinconjunctionwiththeelectricmotorassuch,electricdrivesystems,includingtheonesbasedonfuelcells,canbemadesimplerandmoreefficientbyleavingoutthetransmissionentirelyandtherebyreducinglossesandweight.Moreover,idlinglossesareeliminatedandalsotheyarebettersuitedforpartload.ThedevelopmentincontrolandpowerelectronicshasenabledtheapplicationoflighterACmotors.TheenergyefficiencyofhydrogenusedinvehiclesbasedoneitherfuelcellorICEdrivetrainsistheproductofthefollowingmainfactors(Padro′andPutsche,1999;Kemptonetal.,2001;Ogdenetal.,2001;S?rensenetal.,2001;Delucchi,2003;Koljonenetal.,2004;Ogdenetal.,2004;Crawley,2007;Edwardsetal.,2007;Kalhammeretal.,2007):inFCvehicleseaverageconversionefficiencyoffuelcellsandelectricmotors:between37%and55%;ininternalcombustionenginevehicleseaverageconversionefficiencyoftheICE,includingidlinglossesandtransmissionlosses:15e18%;efficiencyofonboardenergystorage,includingboil-offlossesetc.:93e100%(dependsheavilyonstoragetypeanddrivingpatterns);refuellingefficiency:95e100%;hydrogengenerationbyelectrolysis:75%inpresentalkalinetechnologiesandupto92%infutureadvancedpolymerelectrolysis;liquefactionofhydrogenforthealternativesbasedonliquidhydrogen:70e72%;inFCvehicleseregenerationofbrakinglosses,improvingthevehicleefficiencybybetween0%(atpresent)and15%(inthelongerterm).Fig.1showsthecalculatedspecificelectricityconsumptionperkmoffgridforanaverageDanishpassengercarbeingabattery-electricvehicle(BEV)andavarietyofhydrogenbasedoptions(internalcombustionengine/fuelcell,LH2/CH2),respectively,bothpresentstate-of-the-artandadvancedtechnologies.Hydrogenisassumedtobegeneratedbyelectrolysis.Itcanbeseenthatallhydrogenoptionshaveahigherspecificelectricityconsumptionthanbothofthebatteryelectricvehicleoptions.Attheverybest,thehydrogensolutions(fuelcellandCH2)areaboutathirdpoorerintermsofenergyefficiencythanthepresentbattery-electricvehicle;andatworst,uptoaboutafactor10poorer(ICE/LH2).Fig.2showsthecalculatedCO2emissionsfortheelectricityconsumptionfiguresinFig.1,assumingthatitiscoveredbyaverageelectricityintheDanishelectricitysupplysystemasof2004(DanishEnergyAuthority,2007a).TheestimatedCO2emissionsarealsoshownassumingthathydrogenisgeneratedthroughsteam-reformingofnaturalgas(Ogdenetal.,2001).Finally,thecalculatedCO2emissions(includingupstreamemissions)ofanaverageDanishpassengercarareshown(RoadSafetyandTransportAgency,2007;Edwardsetal.,2007).Thegraphsillustratethepointthattherationaleofhydrogenistoserveasenergy-carrierforrenewableenergy.Butbasedonnaturalgasreforming,thebesthydrogenoptionscangivesubstantialCO2reductionscomparedtothepresentconventionalvehicle(uptoafactor2e3).Andbattery-electricvehicleswillhaveconsiderablelowerCO2emissionsevenbasedonthepresentelectricitysystem.Thisprovidesaconservativeassessmentofbothelectricandhydrogenvehicles,partlybecausetheelectricitysupplysystemisplannedtobeimprovedconsiderablyoverthecomingyears(DanishEnergyAuthority,2007b)andpartlybecauseitignoresthebenefitsachievedbyusingelectricandhydrogenvehiclesasflexibleelectricitydemand(NielsenandJ?rgensen,1997;S?rensenetal.,2001;LundandMu¨nster,2006a,b).Afurtherperspectivecouldbetheutilisationofelectricorhydrogenvehiclesnotonlypassivelyasflexibleloadsonthedemandsidebutalsoactivelyasdecentralisedpowergenerationunits,e.g.(Kemptonetal.,2001;Gage,2003;KemptonandTomie′,2005a,b).5.ThevehiclerangeissueAlthoughtherangeofvehiclesisnotnormallygivenmuchattentioninthecaseofconventionalautomobiles,itcanbeaseriousobstacleforcertaintypesofalternativefuelssuchaselectricityinBEVsorhydrogen.Therangeisdeterminedthroughthejointimpactof:storageweight/volume;specificenergyperweight/volumeofthestorage;thespecificfuelconsumptionperkmofthevehicle.Hence,improvedenergyefficiencyisacrucialwaytoincreasevehiclerange(throughreductionsoflossesand/orbyloweringofdemands).Greaterweight/volumeisameansforincreasingrange,butthisatthesametimeincreasesthespecificelectricityconsumption.Thedifferenthydrogenstorageoptionshaveenergydensitiesinrelationtobothvolumeandweightthatare5e10timeshigherormorethansimilarbatteries.Eventhoughtheconversionofelectricityhasahigherefficiencythanforhydrogen,thisinnowaycompensatesforthedifferentenergydensities.Fig.3illustratestheproblembyshowingcalculatedweightsofthebatteryandhydrogenstorage(compressedhydrogen)forapassengercar.Fourdifferentbatterytechnologiesareincludedbasedonthefollowingprojectionassumptionsfor‘‘highvolumeproductionruns’’(100,000unitsormore)fromstudiescarriedoutbyUniversityofCaliforniaDavis,InstituteofTransportationStudies(DelucchiandLipman,2001):lead/acid(Pb/acid)eenergydensity(aselectricity)30e35Wh/kg,specificcost70e75DKr/kg(equivalentto2e2,25DKr/Wh),lifetime770cycles;nickel/metalhydrideofsecondgeneration(NiMH2G)eenergydensity60e75Wh/kg,specificcost240e300DKr/kg(equivalentto3,25e5DKr/Wh),lifetime670cycles;nickel/metalhydrideoffourthgenerations(NiMH4G)eenergydensity85e110Wh/kg,specificcost240e330DKr/kg(equivalentto2,25e3,00DKr/Wh),lifetime1330cycles;lithium/ion(Li/ion)eenergydensity120e150Wh/kg,specificcost280e400DKr/kg(equivalentto2e3,25DKr/Wh),lifetime1100cycles.TheNiMH2Gbatteryisthecurrentstate-of-the-artfortractionpurposeswithsomedevelopmenttowardsNiMH4G.Thelattercanbeperceivedasanimprovedbatteryatroughlythesamecostsperkg.ThePb/abatteryistheformerstate-of-the-artfortraction,illustratingthedevelopmentovertherecentcouplesofdecades.Inadditiontothebatteries,twohydrogenonboardstorageoptionsareincluded(Ogdenetal.,2001;Edwardsetal.,2007):300baraluminiumtank(presentstate-of-the-art)eenergydensity(ashydrogen)1100Wh/kg,specificcost100DKr/kg(0,09kr/Wh);600barcompositeeenergydensity(ashydrogen)2200Wh/kg,specificcost160DKr/kg(0,09kr/Wh).Itshouldbenotedthattheanalysesarebasedontheoreticalcalculationsnotpracticalresultsandalsothatitdoesnotshowthefullpicturesincetheweightofthefuelcellwilloffsetsomeofthedifference.Inpractice,itwouldnotbepossibletoprovidevehicleswithbatteriesorhydrogenstorageswhichareequivalenttothis,e.g.correspondtohalfofthevehicleweight.Nevertheless,thegraphillustratesthedifferencebetweenbatteriesandhydrogen.WiththeNiMHbatterytechnologyshown,itisnotpossibleinpracticetoextendtherangebeyondapproximately150kmbasedon2Gtechnologyand200e250kmbasedon4Gbatteries.EvenwiththeadvancedLi/ionbattery,itwillnotinthiscalculationberealistictoextendtherangemuchbeyond300e350km.Forhydrogen,ontheotherhand,itwillbepracticablypossible,thoughnotunproblematic,toachieverangesintheorderof600kmevenwiththepresenttechnology;andwithadvancedtypes(highercompressionandlightermaterial),itmaybepossibletoachievethiswithonlyminorproblems.6.Vehiclecostsebatteries,fuelcellsThekeycostcomponentsforelectric/hybridandhydrogenfuelcellvehiclesarethebatteryfortheformerandthefuelcellforthelatter.Thereareotherimportantfactors,includingtheelectricmotor,electrolysis,andonboardstorageofhydrogen.Controlandpowerelectronicsplayasignificantindirectroleforcostsbyallowingmoreappropriatetechnologiestobeapplied.Forsomeoftheseelements,considerableprogresshastakenplace,particularlyforcontrolandpowerelectronics,allowingnewelectricmotorstobeutilised,whichcanbeofsignificanceforelectricpropulsioningeneral,i.e.bothforelectricvehiclesandhydrogen/fuelcellvehicles.Forbothfuelcellsandbatteries,thelifetimeofthecomponentcanhaveseriousimpactsonthelifecyclecostsofthevehicle,intheformofaneedtosubstitutehigh-costcomponentsduetoashortlifetime.Inparticular,thishasbeen,andstillis,acrucialproblemforbatteries,anddurabilityisakeydevelopmentissueforadvancedbatterytypes,suchaslithiumbatteries.Forbatteries,acertainimprovementoftheperformancehastakenplaceoverthelastcoupleofdecadesbutthemaindevelopmentisthatnewebetterbutalsomoreexpensiveebatterytypeshavebecomestate-of-the-art,namelyNiMHbatteriesinsteadoflead/acid,withNiCdbatteriesastheintermediarystepinEurope(LipmanandSperling,1996;Kalhammeretal.,2000;Duvall,2004;Kalhammeretal.,2007).Inaddition,though,adevelopmentoftheNiMHbatteryhasalsobeenseen.Fig.4showscalculatedcostsofthesamebatterytypesandhydrogenonboardstoragesasshowninFig.3(DelucchiandLipman,2001;Ogdenetal.,2001;Edwardsetal.,2007).Here,thesamepictureisseenasinthecaseofweight:comparedtohydrogen,batterieshavemuchhighercosts(intheorderofafactor10e20ormore)whilebeinglimitedtoconsiderablyshorterranges,particularlyforthepresentbatteries.Althoughtheoperationalcostsofelectricvehicleswillalsobelowerthanthoseofhydrogenvehicles,asshownbyFig.1,thisinnowaycompensatesforthemuchhighervehiclecosts,atleastnotintheshortterm.Electricbatteriesareutilisedforarangeofdifferent,andmuchmoresignificant,applicationsbesidestheuseastractionbatteriesfor:electrictools,portablecomputers,cellphones,camerasandmanyothers.Fortheseapplications,thereisaconsiderablepressuretoreducecostsandimprovethedurability,andthisisfrequentlypresumedtocontributetoreducingthecostsoftractionbatteries.However,thepresentspecificcostsofbatteriesfortheseapplicationseintermsofcostsperenergyunitcapacityeisaroundafactor5e10higherthanthatoftractionbatteries,1evenwhencomparingtothepresentmuchtoohighcostseandevenmoresocomparingtofuturecosttargets.Tractionbatteriesareseveralordersofmagnitudelargerthantheseotherapplications,whichwillleadtosubstantiallylowerspecificcosts,everythingelsebeingequal.Ontheotherhand,theywillbemanufacturedinmuchsmallerseries,whichwillinfluencethecostsintheoppositedirection.Thelifetimeofbatteriesisusuallygivenintermsofchargingcycles(forthebatterytypesrelevantinelectricvehicles).Hence,reducingtheelectricityconsumptionperkmisameansofimprovingthelifetimeofbatteries,inadditiontoincreasingtherange.Fig.5illustratesthecalculatedlifetimesofselectedbatterytypesforanaverageDanishautomobileinaveragedrivingpatterns,basedondatafrom(DelucchiandLipman,2001).Theaverageannualdrivingfrequencyisnaturallyakeyfactorconvertingthelifetimesofbatteriesincyclesintoyears.Itisassumedtobe20,300km/a,equivalenttotheaverageoftheDanishautomobilestock.Furthermore,thelifetimeofthebatteryisinverselylinkedtothesizeoftheelectricityconsumptionperkmofthevehicle,andhencethebatterylifetimemaycanbeincreasedbymeansofimprovedfueleconomy,inadditiontoitspositiveimpactontherange.Sincegreaterrangeofthevehicleisequaltomorekilometersdrivenpercycle,thiswillresultinalongerlifetime(butalsoamorecostlyone),everythingelsebeingequal.Itcanbeseenthatthecalculatedlifetimesoflead/acidbatteriesandthepresentgenerationofNiMHbatteriesareconsiderablyshorterthanthelifetimeofthevehicle(forrealisticbatterysizes),whileLi/ionbatteriesmaypotentiallyachievethesamelifetimeorlongerthanthatofthevehicle.Today’sbatteriesforotherapplicationsewhetherLi/ionorNiMHearealongwayfromreapingthispotentialwithlifetimesintheorderof200e300cycles,whichwouldbeequivalenttoabout2e3yearsfortractionapplications.Indeed,durabilityisconsideredakeydevelopmentissueforlithiumbatteriesfortractionapplicationsbesidescostreduction(GainesandCuenca,2000;Kalhammeretal.,2000;Duvall,2004).Forhydrogenvehicles,thecrucialcostissueislinkedtothefuelcelltechnology.ThePEMfuelcellhasexperienceddramaticdevelopmentoverthelastcoupleofdecades,particularlywithaviewtotransportationapplications(Padro′andPutsche,1999;Ogdenetal.,2004).Thisappliestothepropertiesingeneraleweight,volume,operationetc.eandtocostsinparticular.Other,albeitmorelimited,costissuesofsignificanceforhydrogenpropulsionareonboardhydrogenstorageandhydrogenproduction(electrolysis).Inadditiontovehiclecosts,thecostsofinfrastructuremaybeacrucialitem,particularlyduringthetransferperiod.Refuellinginfrastructureinparticularrepresentaprobleminrelationtohydrogen.7.ComparisonofhydrogenandelectricvehiclesFig.6showsthecharacteristicsofdifferentelectricityandhydrogentechnologieswithrespecttospecificelectricityconsumption(kWhelectricityperkm)andrange(km).Electricalpropulsionbasedontoday’stechnologicallevel(‘‘PresentEV’’)resultsinaveryefficientfuelcyclebutalsoalimitedrange.Advancedelectricaltechnology(‘‘AdvancedEV’’)mayleadtoaconsiderablygreaterrangeand,atthesametime,probablyanevenbetterfuelcycleefficiency,potentiallycreatingvehiclesthatcanbeusedformostpurposes.Ontheotherhand,theremaystillbeaneedforvehicleswithlongerrangesehence,providingapotentialroleforhydrogen.Hydrogeninternalcombustionenginevehiclescouldincreaserangesconsiderably,butattheexpenseofthefuelcycleefficiency.Inparticular,liquidhydrogenappliedininternalcombustionengines(‘‘LH2,ICE’’)hasverypoorenergyefficiencycharacteristicsbutalsoascopeforverylongranges,whereasonboardstorageinmetalhydridesorascompressedgas(‘‘C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 一體化物業(yè)管理與維護(hù)服務(wù)協(xié)議范本版A版
- 二零二五年度鮮活農(nóng)產(chǎn)品運(yùn)輸合同協(xié)議及保鮮技術(shù)要求3篇
- 2025年度智能制造廠房租賃居間服務(wù)協(xié)議4篇
- 2024版有關(guān)服務(wù)的合同匯編
- 專業(yè)技術(shù)資訊檢索服務(wù)協(xié)議范本一
- 2025年度廠房建設(shè)項(xiàng)目工程監(jiān)理合同范本4篇
- 2025年度茶葉產(chǎn)品追溯系統(tǒng)建設(shè)合同4篇
- 專用飲用水品質(zhì)保障合同范本2024版B版
- 2025年度常年法律顧問專項(xiàng)服務(wù)合同7篇
- 2025年度體育健身中心場地租賃及會(huì)員服務(wù)合同4篇
- 《流感科普宣教》課件
- 離職分析報(bào)告
- 春節(jié)家庭用電安全提示
- 醫(yī)療糾紛預(yù)防和處理?xiàng)l例通用課件
- 廚邦醬油推廣方案
- 乳腺癌診療指南(2024年版)
- 高三數(shù)學(xué)寒假作業(yè)1
- 保險(xiǎn)產(chǎn)品創(chuàng)新與市場定位培訓(xùn)課件
- (完整文本版)體檢報(bào)告單模版
- 1例左舌鱗癌手術(shù)患者的圍手術(shù)期護(hù)理體會(huì)
- 鋼結(jié)構(gòu)牛腿計(jì)算
評(píng)論
0/150
提交評(píng)論