




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高中數(shù)學(xué)回歸分析第1頁,共21頁,2023年,2月20日,星期四問題1:正方形的面積y與正方形的邊長(zhǎng)x之間的函數(shù)關(guān)系是y=x2確定性關(guān)系問題2:某水田水稻產(chǎn)量y與施肥量x之間是否-------有一個(gè)確定性的關(guān)系?例如:在7塊并排、形狀大小相同的試驗(yàn)田上進(jìn)行施肥量對(duì)水稻產(chǎn)量影響的試驗(yàn),得到如下所示的一組數(shù)據(jù):施化肥量x15202530354045水稻產(chǎn)量y330345365405445450455復(fù)習(xí)、變量之間的兩種關(guān)系第2頁,共21頁,2023年,2月20日,星期四自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系。1、定義:
1):相關(guān)關(guān)系是一種不確定性關(guān)系;注對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的方法叫回歸分析。2):第3頁,共21頁,2023年,2月20日,星期四2、回歸分析的內(nèi)容與步驟:統(tǒng)計(jì)檢驗(yàn)通過后,最后是利用回歸模型,根據(jù)自變量去估計(jì)、預(yù)測(cè)因變量。
回歸分析通過一個(gè)變量或一些變量的變化解釋另一變量的變化。
其主要內(nèi)容和步驟是:首先根據(jù)理論和對(duì)問題的分析判斷,將變量分為自變量和因變量;其次,作出散點(diǎn)圖,設(shè)法找出合適的數(shù)學(xué)方程式(即回歸模型)描述變量間的關(guān)系;由于涉及到的變量具有不確定性,接著還要對(duì)回歸模型進(jìn)行統(tǒng)計(jì)檢驗(yàn);第4頁,共21頁,2023年,2月20日,星期四最小二乘法:其中回歸直線過樣本點(diǎn)的中心稱為樣本點(diǎn)的中心第5頁,共21頁,2023年,2月20日,星期四例1從某大學(xué)中隨機(jī)選取8名女大學(xué)生,其身高和體重?cái)?shù)據(jù)如表所示。編號(hào)12345678身高/cm165165157170175165155170體重/kg4857505464614359求根據(jù)一名女大學(xué)生的身高預(yù)報(bào)她的體重的回歸方程,并預(yù)報(bào)一名身高為172cm的女大學(xué)生的體重。案例1:女大學(xué)生的身高與體重解:1、選取身高為自變量x,體重為因變量y,作散點(diǎn)圖:2、由散點(diǎn)圖知道身高和體重有比較好的線性相關(guān)關(guān)系,因此可以用線性回歸方程刻畫它們之間的關(guān)系。第6頁,共21頁,2023年,2月20日,星期四2.回歸方程:預(yù)測(cè)身高為x=172cm的女生體重為:第7頁,共21頁,2023年,2月20日,星期四案例1:女大學(xué)生的身高與體重1、其它因素的影響:影響身高y的因素不只是體重
x,可能還包括遺傳基因、飲食習(xí)慣、生長(zhǎng)環(huán)境等因素;2、用線性回歸模型近似真實(shí)模型所引起的誤差;3、身高y的觀測(cè)誤差。當(dāng)以上其他因素造成的誤差很小時(shí),模型的擬合效果越好從散點(diǎn)圖還看到,樣本點(diǎn)散布在某一條直線的附近,而不是在一條直線上,所以不能用一次函數(shù)y=bx+a描述它們關(guān)系。探究:身高為172cm的女大學(xué)生的體重一定是60.316kg嗎?如果不是,你能解析一下原因嗎?第8頁,共21頁,2023年,2月20日,星期四我們可以用下面的線性回歸模型來表示:y=bx+a+e,其中a和b為模型的未知參數(shù),e稱為隨機(jī)誤差。第9頁,共21頁,2023年,2月20日,星期四函數(shù)模型與回歸模型之間的差別函數(shù)模型:回歸模型:
線性回歸模型y=bx+a+e增加了隨機(jī)誤差項(xiàng)e,因變量y的值由自變量x和隨機(jī)誤差項(xiàng)e共同確定,即自變量x只能解釋部分y的變化。
在統(tǒng)計(jì)中,我們也把自變量x稱為解釋變量,因變量y稱為預(yù)報(bào)變量。第10頁,共21頁,2023年,2月20日,星期四5943616454505748體重/kg170155165175170157165165身高/cm87654321編號(hào)
例如,編號(hào)為6的女大學(xué)生的體重并沒有落在水平直線上,她的體重為61kg。解釋變量(身高)和隨機(jī)誤差共同把這名學(xué)生的體重從54.5kg“推”到了61kg,相差6.5kg,所以6.5kg是解釋變量和隨機(jī)誤差的組合效應(yīng)。用這種方法可以對(duì)所有預(yù)報(bào)變量計(jì)算組合效應(yīng)。數(shù)學(xué)上,把每個(gè)效應(yīng)(觀測(cè)值減去總的平均值)的平方加起來,即用表示總的效應(yīng),稱為總偏差平方和。在例1中,總偏差平方和為354。54.5kg第11頁,共21頁,2023年,2月20日,星期四
由于解釋變量和隨機(jī)誤差的總效應(yīng)(總偏差平方和)為354,而隨機(jī)誤差的效應(yīng)為128.361,所以解釋變量的效應(yīng)為解釋變量和隨機(jī)誤差的總效應(yīng)(總偏差平方和)
=解釋變量的效應(yīng)(回歸平方和)+隨機(jī)誤差的效應(yīng)(殘差平方和)354-128.361=225.639這個(gè)值稱為回歸平方和。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計(jì)算公式是第12頁,共21頁,2023年,2月20日,星期四1354總計(jì)0.36128.361殘差變量0.64225.639隨機(jī)誤差比例平方和來源
從表3-1中可以看出,解釋變量對(duì)總效應(yīng)約貢獻(xiàn)了64%,即R20.64,可以敘述為“身高解析了64%的體重變化”,而隨機(jī)誤差貢獻(xiàn)了剩余的36%。所以,身高對(duì)體重的效應(yīng)比隨機(jī)誤差的效應(yīng)大得多。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計(jì)算公式是第13頁,共21頁,2023年,2月20日,星期四小結(jié):樣本決定系數(shù)
(判定系數(shù)R2
)1.回歸平方和占總偏差平方和的比例反映回歸直線的擬合程度取值范圍在[0,1]之間4.R21,說明回歸方程擬合的越好;R20,說明回歸方程擬合的越差5.判定系數(shù)等于相關(guān)系數(shù)的平方,即R2=(r)2第14頁,共21頁,2023年,2月20日,星期四顯然,R2的值越大,說明殘差平方和越小,也就是說模型擬合效果越好。在線性回歸模型中,R2表示解析變量對(duì)預(yù)報(bào)變量變化的貢獻(xiàn)率。
R2越接近1,表示回歸的效果越好(因?yàn)镽2越接近1,表示解釋變量和預(yù)報(bào)變量的線性相關(guān)性越強(qiáng))。
如果某組數(shù)據(jù)可能采取幾種不同回歸方程進(jìn)行回歸分析,則可以通過比較R2的值來做出選擇,即選取R2較大的模型作為這組數(shù)據(jù)的模型??偟膩碚f:相關(guān)指數(shù)R2是度量模型擬合效果的一種指標(biāo)。在線性模型中,它代表自變量刻畫預(yù)報(bào)變量的能力。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計(jì)算公式是第15頁,共21頁,2023年,2月20日,星期四表3-2列出了女大學(xué)生身高和體重的原始數(shù)據(jù)以及相應(yīng)的殘差數(shù)據(jù)。
在研究?jī)蓚€(gè)變量間的關(guān)系時(shí),首先要根據(jù)散點(diǎn)圖來粗略判斷它們是否線性相關(guān),是否可以用回歸模型來擬合數(shù)據(jù)。殘差分析與殘差圖的定義:
然后,我們可以通過殘差來判斷模型擬合的效果,判斷原始數(shù)據(jù)中是否存在可疑數(shù)據(jù),這方面的分析工作稱為殘差分析。編號(hào)12345678身高/cm165165157170175165155170體重/kg4857505464614359殘差-6.3732.6272.419-4.6181.1376.627-2.8830.382
我們可以利用圖形來分析殘差特性,作圖時(shí)縱坐標(biāo)為殘差,橫坐標(biāo)可以選為樣本編號(hào),或身高數(shù)據(jù),或體重估計(jì)值等,這樣作出的圖形稱為殘差圖。第16頁,共21頁,2023年,2月20日,星期四2023/5/9殘差圖的制作及作用。坐標(biāo)縱軸為殘差變量,橫軸可以有不同的選擇;若模型選擇的正確,殘差圖中的點(diǎn)應(yīng)該分布在以橫軸為心的帶形區(qū)域;對(duì)于遠(yuǎn)離橫軸的點(diǎn),要特別注意。身高與體重殘差圖異常點(diǎn)
錯(cuò)誤數(shù)據(jù)模型問題
幾點(diǎn)說明:第一個(gè)樣本點(diǎn)和第6個(gè)樣本點(diǎn)的殘差比較大,需要確認(rèn)在采集過程中是否有人為的錯(cuò)誤。如果數(shù)據(jù)采集有錯(cuò)誤,就予以糾正,然后再重新利用線性回歸模型擬合數(shù)據(jù);如果數(shù)據(jù)采集沒有錯(cuò)誤,則需要尋找其他的原因。另外,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型計(jì)較合適,這樣的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高,回歸方程的預(yù)報(bào)精度越高。第17頁,共21頁,2023年,2月20日,星期四例2、在一段時(shí)間內(nèi),某種商品的價(jià)格x元和需求量Y件之間的一組數(shù)據(jù)為:求出Y的回歸直線方程,并說明擬合效果的好壞。價(jià)格x1416182022需求量Y1210753解:第18頁,共21頁,2023年,2月20日,星期四練習(xí)、在一段時(shí)間內(nèi),某種商品的價(jià)格x元和需求量Y件之間的一組數(shù)據(jù)為:求出Y對(duì)的回歸直線方程,并說明擬合效果的好壞。價(jià)格x1416182022需求量y1210753列出殘差表為0.994因而,擬合效果較好。00.3-0.4-0.10.24.62.6-0.4-2.4-4.4第19頁,共21頁,2023年,2月20日,星期四用身高預(yù)報(bào)體重時(shí),需要注意下列問題:1、回歸方程只適用于我們所研究的樣本的總體;2、我們所建立的回歸方程一般都有時(shí)間性;3、樣本采集的范圍會(huì)影響回歸方程的適用范圍;4、不能期望回歸方程得到的預(yù)報(bào)值就是預(yù)報(bào)變量的精確值。事實(shí)上,它是預(yù)報(bào)變量的可能取值的平均值?!@些問題也使用于其他問題。涉及到統(tǒng)計(jì)的一些思想:模型適用的總體;模型的時(shí)間性;樣本的取值范圍對(duì)模型的影響;模型預(yù)報(bào)結(jié)果的正確理解。小結(jié)第20頁,共21頁,2023年,2月20日,星期四一般地,建立回歸模型的基本步驟為:(1)確定研究對(duì)象,明確哪個(gè)變量是解析變量,哪個(gè)變量是預(yù)報(bào)變量。(2)畫出確定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)產(chǎn)品批發(fā)綜合市場(chǎng)招商引資策略
- 二零二五年度建筑勞務(wù)用工實(shí)名制管理合同
- 2025至2030年中國(guó)干花玻璃盤數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)市話電纜數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 二零二五年度日租房短租租賃與旅游服務(wù)合同
- 二零二五年度農(nóng)業(yè)技術(shù)引進(jìn)外聘專家指導(dǎo)協(xié)議
- 二零二五年度保險(xiǎn)公司與金融科技公司風(fēng)險(xiǎn)轉(zhuǎn)移合同
- 2025年度科技園區(qū)委托中介代理出租管理合同
- 2025年度河北省企業(yè)職工勞動(dòng)爭(zhēng)議調(diào)解協(xié)議書
- 第13課《湖心亭看雪》教學(xué)設(shè)計(jì) 2024-2025學(xué)年統(tǒng)編版語文九年級(jí)上冊(cè)
- 體育足球籃球排球體操教案
- 統(tǒng)編版高中政治必修3必背主觀題
- 保管錢財(cái)協(xié)議書的范本
- 探索2-個(gè)人信息資源的防護(hù)措施-課件-蘇科版(2023)初中信息技術(shù)七年級(jí)下冊(cè)
- 供電所安全第一課培訓(xùn)
- 湖北省武漢市二月調(diào)考讀后續(xù)寫解析+課件
- 鄭州鐵路職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試參考試題庫(含答案)
- 岳陽職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試參考試題庫(含答案)
- 部編人教版六年級(jí)道德與法治下冊(cè)第7課《多元文化 多樣魅力》教學(xué)設(shè)計(jì)
- 新時(shí)代勞動(dòng)教育教程(高職)大學(xué)生勞動(dòng)教育全套教學(xué)課件
- 2023年開展的課外讀物負(fù)面清單管理的具體措施
評(píng)論
0/150
提交評(píng)論