版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
基于壓縮感知的正交匹配算法圖像重建摘要:壓縮感知理論是由Donoho和Candes提出的一種充分利用信號稀疏性的全新的信號采樣理論。該理論表明,用遠(yuǎn)低于Nyquist采樣定理要求的頻率對信號進(jìn)行采樣也能實現(xiàn)信號的精確重構(gòu)。該理論突破了傳統(tǒng)的以Nyquist定理為基準(zhǔn)的信號處理方法,實現(xiàn)了在獲取數(shù)據(jù)的同時對其進(jìn)行適當(dāng)?shù)膲嚎s,克服了采樣數(shù)據(jù)量大,采樣時間長及數(shù)據(jù)存儲空間浪費嚴(yán)重的問題,因此進(jìn)一步降低了信號處理的時間和器件成本。壓縮感知理論有三個核心方面:(1)稀疏變換,即對一個非稀疏的信號,找到一個合適的正交基使該信號在它上可以稀疏表示;(2)測量矩陣,與變換基不相干且平穩(wěn)的矩陣;(3)重構(gòu)算法,利用數(shù)學(xué)算法完成對信號的精確重構(gòu),該過程可看為求解一個優(yōu)化問題。本文介紹了主要介紹了壓縮感知原理和目前最為成熟的壓縮感知重建算法——正交匹配追蹤算法,通過MATLAB平臺設(shè)計實現(xiàn)了基本的正交匹配追蹤算法,對一維、二維信號進(jìn)行了重建仿真。關(guān)鍵詞:壓縮感知;稀疏變換;正交匹配;圖像重建BasedOnCompressedSensingOfOrthogonalMatchingAlgorithmImageRecoveryAbstract:CompressedsensingisanovelsamplingtheorywhichisproposedbyDonohoandCandès.Thistheoryisundertheconditionthatthesignaliscompressibleorsparse.Inthiscase,usingfarlessthantherequiredsamplingfrequencyoftheNyquisttheorytosamplethesignalisabletoaccuratelyreconstructthesignal.CompressedtheorybreaksthoughthetraditionalNyquistsamplingtheory,whichovercomesalotofproblemssuchasagreatnumberofsamplingdata,timewasting,datastoragespacewastingandsoon.Asaresult,itreducessignalprocessingcostanddevicecost.Thecompressedtheoryhasthreekeysides:(1)Sparsetransformation,foranon-sparsesignal,weneedtofindaproperorthogonalbasisonwhichthesignalhasasparserepresentation;(2)Observationmatrix,itisirrelevantwiththeorthogonalbasis;(3)reconstructionalgorithms,usingareconstructionalgorithmtoensuretheaccuracyofthesignalreconstruction,thewholeprocesscanbeconsideredasthesolvetoaoptimizationproblem.ThispaperintroducesCSandmostmaturecompressionperceptionalgorithmatpresent-Orthogonalmatchingalgorithm.ThroughtheMATLABdesignrealizebasicorthogonalmatchingalgorithms,ThroughtheMATLABdesignrealizebasicorthogonalmatchingalgorithmofone-dimensional,two-dimensionalsignalprocessingsimulation.Keywords:Compressedsensing;Sparsetransform;Orthogonalmatching;Imagerecovery.西安文理學(xué)院本科畢業(yè)設(shè)計(論文)第頁參考文獻(xiàn)[1]李樹濤,魏丹.壓縮傳感綜述.自動化學(xué)報,2009,35(11):1369-1377.[2]邵文澤,韋志輝,肖亮等.壓縮感知基本理論:回顧與展望.中國科技論文在線.[3]金堅,谷源濤,梅順良.壓縮采樣技術(shù)及應(yīng)用.電子與信息學(xué)報,2010,62(2):470-475[4]石光明.劉丹華.高大化.劉哲.林杰.王良君壓縮感知理論及其研究進(jìn)展-ACTAElectronicaSinica2009,37(5)[5]沙威.“壓縮傳感”引論.http://www.eee.hku.hk/~wsha[6]何雪云,宋榮芳,周克琴.基于壓縮感知的OFDM系統(tǒng)系數(shù)信道估計新方法研究.南京郵電大學(xué)學(xué)報,2010,30(2):60-65[7]JustinRomberg.ImagingviaCompressiveSampling.IEEESignalProcessingMagazine,2008,14-20[8]張銳基于壓縮感知理論的圖像壓縮初步研究-ComputerKnowledgeAndTechnology2010,6(4)[9]喻玲娟.謝曉春壓縮感知理論簡介-VideoEngineering2008,32(12)[10]張春梅.尹忠科.肖明霞基于冗余字典的信號超完備表示與稀疏分解-科學(xué)通報2006(06)[11]JoelA.TroppandAnnaC.GilbertSignalRecoveryFromRandomMeasurementsViaOrthogonalMatchingPursuit,IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.53,NO.12[12]DONOHOD.TSAIGYExtensionsofcompressedsensing2006(03)[13]ECandesandJRomberg,Quantitativerobustuncentaintyprinciplesandoptimallysparsedecompositions[J].FoundationsofComputMath,2006,6(2):227-254.[14]李小波.基于壓縮感知的測量矩陣研究.北京交通大學(xué)碩士學(xué)位論文.2010:6[15]石光明,劉丹華,高大化.壓縮感知理論及研究進(jìn)展.電子學(xué)報.2009,37(5):1075-1076附錄一源程序清單程序1:一維原始信號的生成程序:clc;clear%%1.時域測試信號生成K=7;%稀疏度(做FFT可以看出來)N=256;%信號長度M=64;%測量數(shù)(M>=K*log(N/K),至少40,但有出錯的概率)f1=50;%信號頻率1f2=100;%信號頻率2f3=200;%信號頻率3f4=400;%信號頻率4fs=800;%采樣頻率ts=1/fs;%采樣間隔Ts=1:N;%采樣序列x=0.3*sin(2*pi*f1*Ts*ts)+0.6*sin(2*pi*f2*Ts*ts)+0.1*sin(2*pi*f3*Ts*ts)+0.9*sin(2*pi*f4*Ts*ts);%完整信號plot(x,'r')%原始信號程序2:一維重建信號的生成clc;clear%%1.時域測試信號生成K=7;%稀疏度(做FFT可以看出來)N=256;%信號長度M=64;%測量數(shù)(M>=K*log(N/K),至少40,但有出錯的概率)f1=50;%信號頻率1f2=100;%信號頻率2f3=200;%信號頻率3f4=400;%信號頻率4fs=800;%采樣頻率ts=1/fs;%采樣間隔Ts=1:N;%采樣序列x=0.3*sin(2*pi*f1*Ts*ts)+0.6*sin(2*pi*f2*Ts*ts)+0.1*sin(2*pi*f3*Ts*ts)+0.9*sin(2*pi*f4*Ts*ts);%完整信號%%2.時域信號壓縮傳感Phi=randn(M,N);%測量矩陣(高斯分布白噪聲)s=Phi*x.';%獲得線性測量%%3.正交匹配追蹤法重構(gòu)信號(本質(zhì)上是1-范數(shù)最優(yōu)化問題)m=2*K;%算法迭代次數(shù)(m>=K)Psi=fft(eye(N,N))/sqrt(N);%傅里葉正變換矩陣T=Phi*Psi';%恢復(fù)矩陣(測量矩陣*正交反變換矩陣)hat_y=zeros(1,N);%待重構(gòu)的譜域(變換域)向量Aug_t=[];%增量矩陣(初始值為空矩陣)r_n=s;%殘差值fortimes=1:m;%迭代次數(shù)(有噪聲的情況下,該迭代次數(shù)為K)forcol=1:N;%恢復(fù)矩陣的所有列向量product(col)=abs(T(:,col)'*r_n);%恢復(fù)矩陣的列向量和殘差的投影系數(shù)(內(nèi)積值)end[val,pos]=max(product);%最大投影系數(shù)對應(yīng)的位置Aug_t=[Aug_t,T(:,pos)];%矩陣擴(kuò)充T(:,pos)=zeros(M,1);%選中的列置零(實質(zhì)上應(yīng)該去掉,為了簡單我把它置零)aug_y=(Aug_t'*Aug_t)^(-1)*Aug_t'*s;%最小二乘,使殘差最小r_n=s-Aug_t*aug_y;%殘差pos_array(times)=pos;%紀(jì)錄最大投影系數(shù)的位置endhat_y(pos_array)=aug_y;%重構(gòu)的譜域向量hat_x=real(Psi'*hat_y.');%做逆傅里葉變換重構(gòu)得到時域信號%%4.恢復(fù)信號和原始信號對比figure(1)holdon;plot(hat_x,'k.-')%重建信號plot(x,'r')%原始信號legend('Recovery','Original')norm(hat_x.'-x)/norm(x)%重構(gòu)誤差程序3:二維圖像OMP重建functionWavelet_OMPclc;clearX=imread('lena256.bmp');%讀文件X=double(X);[a,b]=size(X);ww=DWT(a);%小波變換矩陣生成X1=ww*sparse(X)*ww';%小波變換讓圖像稀疏化(注意該步驟會耗費時間,但是會增大稀疏度X1=full(X1);M=190;%隨機(jī)矩陣生成R=randn(M,a);Y=R*X1;%測量%OMP算法X2=zeros(a,b);%恢復(fù)矩陣fori=1:b%列循環(huán)rec=omp(Y(:,i),R,a);X2(:,i)=rec;endfigure(1);%原始圖像imshow(uint8(X));title('原始圖像');figure(2);%變換圖像imshow(uint8(X1));title('小波變換后的圖像');figure(3);%壓縮傳感恢復(fù)的圖像X3=ww'*sparse(X2)*ww;%小波反變換X3=full(X3);imshow(uint8(X3));title('恢復(fù)的圖像');%誤差(PSNR)errorx=sum(sum(abs(X3-X).^2));%MSE誤差psnr=10*log10(255*255/(errorx/a/b))%PSNR%OMP的函數(shù)%s-測量;T-觀測矩陣;N-向量大小functionhat_y=omp(s,T,N)Size=size(T);%觀測矩陣大小M=Size(1);%測量hat_y=zeros(1,N);%待重構(gòu)的譜域(變換域)向量Aug_t=[];%增量矩陣(初始值為空矩陣)r_n=s;%殘差值fortimes=1:M/4;%迭代次數(shù)(稀疏度是測量的1/4)forcol=1:N;%恢復(fù)矩陣的所有列向量product(col)=abs(T(:,col)'*r_n);%恢復(fù)矩陣的列向量和殘差的投影系數(shù)(內(nèi)積值)end[val,pos]=max(product);%最大投影系數(shù)對應(yīng)的位置Aug_t=[Aug_t,T(:,pos)];%矩陣擴(kuò)充T(:,pos)=zeros(M,1);%選中的列置零(實質(zhì)上應(yīng)該去掉,為了簡單我把它置零)aug_y=(Aug_t'*Aug_t)^(-1)*Aug_t'*s;%最小二乘,使殘差最小r_n=s-Aug_t*aug_y;%殘差pos_array(times)=pos;%紀(jì)錄最大投影系數(shù)的位置if(norm(r_n)<9)%殘差足夠小break;endendhat_y(pos_array)=aug_y;%重構(gòu)的向量程序4:BP、OMP、STOMP_FDR重建圖像x=imread('lena.bmp');%讀文件[m,n]=size(x);xrec_BP=size(x);xrec_OMP=size(x);xrec_FDR=size(x);t_BP=0;t_OMP=0;t_FDR=0;fori=1:mx1=x(i,:);[cA,cD]=dwt(x1,'db1');%小波變換c1=length(cD)Mdetail=c1;Ndetail=floor(c1*0.4);A=randn(Ndetail,Mdetail);%隨機(jī)矩陣生成y=A*cD';q=0.5;S=10;tic;alpha=SolveBP(A,y,Mdetail);%BP算法處理圖像t_BP=t_BP+toc;rec1=idwt(cA,alpha','db1');xrec_BP(i,1:n)=rec1;tic;[alpha,iters,activeset]=SolveOMP(A,y,Mdetail);%OMP算法處理圖像t_OMP=t_OMP+toc;rec2=idwt(cA,alpha','db1');xrec_OMP(i,1:n)=rec2;tic;[alpha,iters]=SolveStOMP(A,y,Mdetail,'FDR',q,S);%STOMP_FDR算法處理圖像t_FDR=t_FDR+toc;rec3=idwt(cA,alpha','db1');xrec_FDR(i,1:n)=rec3;endsubplot(2,2,1);imshow(x);title(['Origineimage','N=',num2str(m*n)]);%原始圖像subplot(2,2,2);imshow(uint8(xrec_BP));title(['BP,','samp=',num2str((Ndetail/Mdetail)*100),'%time=',num2str(t_BP),'sec']);%BP恢復(fù)圖像subplot(2,2,3);imshow(uint8(xrec_OMP));title(['OMP,','samp=',num2str((Ndetail/Mdetail)*100),'%time=',num2str(t_OMP),'sec']);%OMP恢復(fù)圖像subplot(2,2,4);imshow(uint8(xrec_FDR));title(['FDR,','samp=',num2str((Ndetail/Mdetail)*100),'%time=',num2str(t_FDR),'sec']);%STOMP恢復(fù)圖像附錄二英文文獻(xiàn)翻譯英文文獻(xiàn):ImageProcessingImageprocessingisnotaonestepprocess.Weareabletodistinguishbetweenseveralstepswhichmustbeperformedoneaftertheotheruntilwecanextractthedataofinterestfromtheobservedscene.Imageprocessingbeginswiththecaptureofanimagewithasuitable,notnecessarilyoptical,acquisitionsystem.Inatechnicalorscientificapplication,wemaychoosetoselectanappropriateimagingsystem.Furthermore,wecansetuptheilluminationsystem,choosethebestwavelengthrange,andselectotheroptionstocapturetheobjectfeatureofinterestinthebestwayinanimage.Oncetheimageissensed,itmustbebroughtintoaformthatcanbetreatedwithdigitalcomputers.Thisprocessiscalleddigitization.Thefirststepsofdigitalprocessingmayincludeanumberofdifferentoperationsandareknownasimageprocessing.Ifthesensorhasnonlinearcharacteristics,these
needtobecorrected.Likewise,brightnessandcontrastoftheimagemayrequireimprovement.Commonly,too,coordinatetransformationsareneededtorestoregeometricaldistortionsintroducedduringimageformation.Radiometricandgeometriccorrectionsareelementarypixelprocessingoperations.Itmaybenecessarytocorrectknowndisturbancesintheimage,forinstancecausedbyadefocusedoptics,motionblur,errorsinthesensor,orerrorsinthetransmissionofimagesignals.Wealsodealwithreconstructiontechniqueswhicharerequiredwithmanyindirectimagingtechniquessuchastomographythatdelivernodirectimage.Awholechainofprocessingstepsisnecessarytoanalyzeandidentifyobjects.First,adequatefilteringproceduresmustbeappliedinordertodistinguishtheobjectsofinterestfromotherobjectsandthebackground.Essentially,fromanimage(orseveralimages),oneormorefeatureimagesareextracted.Thebasictoolsforthistaskareaveragingandedgedetectionandtheanalysisofsimpleneighborhoodsandcomplexpatternsknownastextureinimageprocessing.Animportantfeatureofanobjectisalsoitsmotion.Techniquestodetectanddeterminemotionarenecessary.Thentheobjecthastobeseparatedfromthebackground.Thismeansthatregionsofconstantfeaturesanddiscontinuitiesmustbeidentified.Thisprocessleadstoalabelimage.Nowthatweknowtheexactgeometricalshapeoftheobject,wecanextractfurtherinformationsuchasthemeangrayvalue,thearea,perimeter,andotherparametersfortheformoftheobject.Theseparameterscanbeusedtoclassifyobjects.Thisisanimportantstepinmanyapplicationsofimageprocessing,asthefollowingexamplesshow:Inasatelliteimageshowinganagriculturalarea,wewouldliketodistinguishfieldswithdifferentfruitsandobtainparameterstoestimatetheirripenessortodetectdamagebyparasites.Therearemanymedicalapplicationswheretheessentialproblemistodetectpathologi-alchanges.Aclassicexampleistheanalysisofaberrationsinchromosomes.Characterrecognitioninprintedandhandwrittentextisanotherexamplewhichhasbeenstudiedsinceimageprocessingbeganandstillposessignificantdifficulties.Youhopefullydomore,namelytrytounderstandthemeaningofwhatyouarereading.Thisisalsothefinalstepofimageprocessing,whereoneaimstounderstandtheobservedscene.Weperformthistaskmoreorlessunconsciouslywheneverweuseourvisualsystem.Werecognizepeople,wecaneasilydistinguishbetweentheimageofascientificlabandthatofalivingroom,andwewatchthetraffictocrossastreetsafely.Wealldothiswithoutknowinghowthevisualsystemworks.Forsometimesnow,imageprocessingandcomputer-graphicshavebeentreatedastwodifferentareas.Knowledgeinbothareashasincreasedconsiderablyandmorecomplexproblemscannowbetreated.Computergraphicsisstrivingtoachievephotorealisticcomputer-generatedimagesofthree-dimensionalscenes,whileimageprocessingistryingtoreconstructonefromanimageactuallytakenwithacamera.Inthissense,imageprocessingperformstheinverseproceduretothatofcomputergraphics.Westartwithknowledgeoftheshapeandfeaturesofanobject.andworkupwardsuntilwegetatwo-dimensionalimage.Tohandleimageprocessingorcomputergraphics,webasicallyhavetoworkfromthesameknowledge.Weneedtoknowtheinteractionbetweenilluminationandobjects,howathree-dimensionalsceneisprojectedontoanimageplane,etc.Therearestillquiteafewdifferencesbetweenanimageprocessingandagraphicsworkstation.Butwecanenvisagethat,whenthesimilaritiesandinterrelationsbetweencomputergraphicsandimageprocessingarebetterunderstoodandtheproperhardwareisdeveloped,wewillseesomekindofgeneral-purposeworkstationinthefuturewhichcanhandlecomputergraphicsaswellasimageprocessingtasks.Theadventofmultimedia,I.e.,theintegrationoftext,images,sound,andmovies,willfurtheracceleratetheunificationofcomputergraphicsandimageprocessing.InJanuary1980ScientificAmericanpublishedaremarkableimagecalledPlume2,thesecondofeightvolcaniceruptionsdetectedontheJovianmoonbythespacecraftVoyager1on5March1979.Thepicturewasalandmarkimageininterplanetaryexploration—thefirsttimeaneruptingvolcanohadbeenseeninspace.Itwasalsoatriumphforimageprocessing.Satelliteimageryandimagesfrominterplanetaryexplorershaveuntilfairlyrecentlybeenthemajorusersofimageprocessingtechniques,whereacomputerimageisnumericallymanipulatedtoproducesomedesiredeffect-suchasmakingaparticularaspectorfeatureintheimagemorevisible.ImageprocessinghasitsrootsinphotoreconnaissanceintheSecondWorldWarwhereprocessingoperationswereopticalandinterpretationoperationswereperformedbyhumanswhoundertooksuchtasksasquantifyingtheeffectofbombingraids.Withtheadventofsatelliteimageryinthelate1960s,muchcomputer-basedworkbeganandthecolorcompositesatelliteimages,sometimesstartlinglybeautiful,havebecomepartofourvisualcultureandtheperceptionofourplanet.Likecomputergraphics,itwasuntilrecentlyconfinedtoresearchlaboratorieswhichcouldaffordtheexpensiveimageprocessingcomputersthatcouldcopewiththesubstantialprocessingoverheadsrequiredtoprocesslargenumbersofhigh-resolutionimages.Withtheadventofcheappowerfulcomputersandimagecollectiondeviceslikedigitalcamerasandscanners,wehaveseenamigrationofimageprocessingtechniquesintothepublicdomain.Classicalimageprocessingtechniquesareroutinelyemployedbygraphicdesignerstomanipulatephotographicandgeneratedimagery,eithertocorrectdefects,changecolorandsoonorcreativelytotransformtheentirelookofanimagebysubjectingittosomeoperationsuchasedgeenhancement.Arecentmainstreamapplicationofimageprocessingisthecompressionofimages—eitherfortransmissionacrosstheInternetorthecompressionofmovingvideoimagesinvideotelephonyandvideoconferencing.Videotelephonyisoneofthecurrentcrossoverareasthatemploybothcomputergraphicsandclassicalimageprocessingtechniquestotrytoachieveveryhighcompressionrates.Allthisispartofaninexorabletrendtowardsthedigitalrepresentationofimages.Indeedthatmostpowerfulimageformofthetwentiethcentury—theTVimage—isalsoabouttobetakenintothedigitaldomain.Imageprocessingischaracterizedbyalargenumberofalgorithmsthatarespecificsolutionstospecificproblems.Somearemathematicalorcontext-independentoperationsthatareappliedtoeachandeverypixel.Forexample,wecanuseFouriertransformstoperformimagefilteringoperations.Othersare“algorithmic”—wemayuseacomplicatedrecursivestrategytofindthosepixelsthatconstitutetheedgesinanimage.Imageprocessingoperationsoftenformpartofacomputervisionsystem.Theinputimagemaybefilteredtohighlightorrevealedgespriortoashapedetectionusuallyknownaslow-leveloperations.Incomputergraphicsfilteringoperationsareusedextensivelytoavoidabasingorsamplingartifacts.中文翻譯:圖像處理圖像處理不是一步就能完成的過程。可將它分成諸多步驟,必須一個接一個地執(zhí)行這些步驟,直到從被觀察的景物中提取出有用的數(shù)據(jù)。圖像處理首先是以適當(dāng)?shù)牡灰欢ㄊ枪鈱W(xué)的采集系統(tǒng)對圖像進(jìn)行采集。在技術(shù)或科學(xué)應(yīng)用中,可以選擇一個適當(dāng)?shù)某上裣到y(tǒng)。此外,可以建立照明系統(tǒng),選擇最佳波長范圍,以及選擇其他方案以便用最好的方法在圖像中獲取有用的對象特征。一旦圖像被檢測到,必須將其變成數(shù)字計算機(jī)可處理的形式,這個過程稱之為數(shù)字化。數(shù)字化處理的第一步包含了一系列不同的操作并被稱之為圖像處理。如果傳感器具有非線性特性,就必須予以校正,同樣,圖像的亮度和對比度也需要改善。通常,還需要進(jìn)行坐標(biāo)變換以消除在成像時產(chǎn)生的幾何畸變。輻射度校正和幾何校正是最基本的像素處理操作。在圖像中,對已知的干擾進(jìn)行校正也是不可少的,比如由于光學(xué)聚焦不準(zhǔn),運動模糊,傳感器誤差以及圖像信號傳輸誤差所引起的干擾。在此還要涉及圖像重構(gòu)技術(shù),它需要許多間接的成像技術(shù),比如不直接提供圖像的X射線斷層技術(shù)等。一套完整的處理步驟對于物體的分析和識別是必不可少的。首先,應(yīng)該采用適當(dāng)?shù)倪^濾技術(shù)以便從其他物體和背景中將所感興趣的物體區(qū)分出來。實質(zhì)上就是從一幅圖像(或者數(shù)幅圖像)中抽取出一幅或幾幅特征圖像。要完成這個任務(wù)最基本的工具就是圖像處理中所使用的求均值和邊緣檢測、簡單的相鄰像素分析,以及復(fù)雜的被稱為材質(zhì)描述的模式分析。物體的一個重要特性就是它的運動性。檢測和確定物體運動性的技術(shù)是必不可少的。隨后,該物體必須從背景中分離出來,這就意味著具有同樣特性和不同特性的區(qū)域必須被識別出來。這個過程產(chǎn)生出標(biāo)志圖像。既然已經(jīng)知道了物體精確的幾何形狀,就可以抽取諸如平均灰度值、區(qū)域、邊界以及形成物體的其他參數(shù)等更多的信息。這些參數(shù)可用來對物體進(jìn)行分類,這是許多圖像處理應(yīng)用中至關(guān)重要的一步,比如下面一些應(yīng)用:在一個顯示農(nóng)業(yè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年魯教版選修5歷史上冊月考試卷
- 2025年滬科版九年級歷史上冊階段測試試卷含答案
- 2025年人教版高三歷史上冊階段測試試卷含答案
- 2025年度新型門窗技術(shù)研發(fā)與承攬合同2篇
- 二零二五版美容美發(fā)行業(yè)美容院會員積分體系開發(fā)與運營合同4篇
- 二零二五年度進(jìn)口奶粉批文申請及市場準(zhǔn)入服務(wù)合同4篇
- 二零二五年度南京市房產(chǎn)局發(fā)布的房產(chǎn)抵押權(quán)轉(zhuǎn)讓合同樣本4篇
- 2025年度智能門窗控制系統(tǒng)供應(yīng)合同范本4篇
- 二零二五年度旅游服務(wù)業(yè)農(nóng)民工勞動合同范本大全4篇
- 2025年度綠色生態(tài)面料生產(chǎn)加工合作合同4篇
- 疥瘡病人的護(hù)理
- 人工智能算法與實踐-第16章 LSTM神經(jīng)網(wǎng)絡(luò)
- 17個崗位安全操作規(guī)程手冊
- 2025年山東省濟(jì)南市第一中學(xué)高三下學(xué)期期末統(tǒng)一考試物理試題含解析
- 中學(xué)安全辦2024-2025學(xué)年工作計劃
- 網(wǎng)絡(luò)安全保障服務(wù)方案(網(wǎng)絡(luò)安全運維、重保服務(wù))
- 2024年鄉(xiāng)村振興(產(chǎn)業(yè)、文化、生態(tài))等實施戰(zhàn)略知識考試題庫與答案
- 現(xiàn)代科學(xué)技術(shù)概論智慧樹知到期末考試答案章節(jié)答案2024年成都師范學(xué)院
- 軟件模塊化設(shè)計與開發(fā)標(biāo)準(zhǔn)與規(guī)范
- 2024年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 有機(jī)農(nóng)業(yè)種植模式
評論
0/150
提交評論