福建省福安市城區(qū)初中小片區(qū)重點達標名校2022-2023學年中考數學全真模擬試卷含解析_第1頁
福建省福安市城區(qū)初中小片區(qū)重點達標名校2022-2023學年中考數學全真模擬試卷含解析_第2頁
福建省福安市城區(qū)初中小片區(qū)重點達標名校2022-2023學年中考數學全真模擬試卷含解析_第3頁
福建省福安市城區(qū)初中小片區(qū)重點達標名校2022-2023學年中考數學全真模擬試卷含解析_第4頁
福建省福安市城區(qū)初中小片區(qū)重點達標名校2022-2023學年中考數學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.把a?的根號外的a移到根號內得()A. B.﹣ C.﹣ D.2.如圖,在矩形ABCD中,E是AD上一點,沿CE折疊△CDE,點D恰好落在AC的中點F處,若CD=,則△ACE的面積為()A.1 B. C.2 D.23.已知圓內接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.4.我國古代數學著作《增刪算法統(tǒng)宗》記載”繩索量竿”問題:“一條竿子一條索,索比竿子長一托.折回索子卻量竿,卻比竿子短一托“其大意為:現有一根竿和一條繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.設繩索長x尺,竿長y尺,則符合題意的方程組是()A. B. C. D.5.已知反比例函數下列結論正確的是()A.圖像經過點(-1,1) B.圖像在第一、三象限C.y隨著x的增大而減小 D.當x>1時,y<16.下列事件中,必然事件是()A.若ab=0,則a=0B.若|a|=4,則a=±4C.一個多邊形的內角和為1000°D.若兩直線被第三條直線所截,則同位角相等7.不等式3x≥x-5的最小整數解是()A.-3 B.-2 C.-1 D.28.下列各組單項式中,不是同類項的一組是()A.和 B.和 C.和 D.和39.為了解某小區(qū)小孩暑期的學習情況,王老師隨機調查了該小區(qū)8個小孩某天的學習時間,結果如下(單位:小時):1.5,1.5,3,4,2,5,2.5,4.5,關于這組數據,下列結論錯誤的是()A.極差是3.5 B.眾數是1.5 C.中位數是3 D.平均數是310.如圖,將邊長為2cm的正方形OABC放在平面直角坐標系中,O是原點,點A的橫坐標為1,則點C的坐標為()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)11.已知實數a<0,則下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>012.已知不透明的袋中只裝有黑、白兩種球,這些球除顏色外都相同,其中白球有30個,黑球有n個.隨機地從袋中摸出一個球,記錄下顏色后,放回袋子中并搖勻,再從中摸出一個球,經過如此大量重復試驗,發(fā)現摸出的黑球的頻率穩(wěn)定在0.4附近,則n的值約為()A.20 B.30 C.40 D.50二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某班有54名學生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新學期準備調整座位,設某個學生原來的座位為(m,n),如果調整后的座位為(i,j),則稱該生作了平移[a,b]=[m-i,n-j],并稱a+b為該生的位置數.若某生的位置數為10,則當m+n取最小值時,m?n的最大值為_____________.14.近年來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為進一步普及環(huán)保和健康知識,我市某校舉行了“建設宜居成都,關注環(huán)境保護”的知識競賽,某班的學生成績統(tǒng)計如下:成績(分)60708090100人數4812115則該辦學生成績的眾數和中位數分別是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分15.如圖,⊙O是△ABC的外接圓,∠AOB=70°,AB=AC,則∠ABC=__.

16.《九章算術》是中國傳統(tǒng)數學最重要的著作,奠定了中國傳統(tǒng)數學的基本框架,其中方程術是重要的數學成就.書中有一個方程問題:今有醇酒一斗,直錢五十;行酒一斗,直錢一十.今將錢三十,得酒二斗.問醇、行酒各得幾何?意思是:今有美酒一斗,價格是50錢;普通酒一斗,價格是10錢.現在買兩種酒2斗共付30錢,問買美酒、普通酒各多少?設買美酒x斗,買普通酒y斗,則可列方程組為______________.17.在一個不透明的布袋中,紅色、黑色的玻璃球共有20個,這些球除顏色外其它完全相同.將袋中的球攪勻,從中隨機摸出一個球,記下顏色后再放回袋中,不斷地重復這個過程,摸了200次后,發(fā)現有60次摸到黑球,請你估計這個袋中紅球約有_____個.18.觀察下列一組數:,它們是按一定規(guī)律排列的,那么這一組數的第n個數是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉90°得線段PQ.(1)當點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;(2)當AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大??;(3)在點P運動中,當以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結果.20.(6分)為了弘揚學生愛國主義精神,充分展現新時期青少年良好的思想道德素質和精神風貌,豐富學生的校園生活,陶冶師生的情操,某校舉辦了“中國夢?愛國情?成才志”中華經典詩文誦讀比賽.九(1)班通過內部初選,選出了麗麗和張強兩位同學,但學校規(guī)定每班只有1個名額,經過老師與同學們商量,用所學的概率知識設計摸球游戲決定誰去,設計的游戲規(guī)則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強從B箱摸一個球進行試驗,若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強去;若兩人摸出球顏色不一樣,則放回重復以上動作,直到分出勝負為止.根據以上規(guī)則回答下列問題:(1)求一次性摸出一個黃球和一個白球的概率;(2)判斷該游戲是否公平?并說明理由.21.(6分)實踐體驗:(1)如圖1:四邊形ABCD是矩形,試在AD邊上找一點P,使△BCP為等腰三角形;(2)如圖2:矩形ABCD中,AB=13,AD=12,點E在AB邊上,BE=3,點P是矩形ABCD內或邊上一點,且PE=5,點Q是CD邊上一點,求PQ得最值;問題解決:(3)如圖3,四邊形ABCD中,AD∥BC,∠C=90°,AD=3,BC=6,DC=4,點E在AB邊上,BE=2,點P是四邊形ABCD內或邊上一點,且PE=2,求四邊形PADC面積的最值.22.(8分)如圖1,△ABC中,AB=AC=6,BC=4,點D、E分別在邊AB、AC上,且AD=AE=1,連接DE、CD,點M、N、P分別是線段DE、BC、CD的中點,連接MP、PN、MN.(1)求證:△PMN是等腰三角形;(2)將△ADE繞點A逆時針旋轉,①如圖2,當點D、E分別在邊AC兩側時,求證:△PMN是等腰三角形;②當△ADE繞點A逆時針旋轉到第一次點D、E、C在一條直線上時,請直接寫出此時BD的長.23.(8分)先化簡,再求代數式()÷的值,其中x=sin60°,y=tan30°.24.(10分)2017年10月31日,在廣州舉行的世界城市日全球主場活動開幕式上,住建部公布許昌成為“國家生態(tài)園林城市”在2018年植樹節(jié)到來之際,許昌某中學購買了甲、乙兩種樹木用于綠化校園.若購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元.(1)求甲種樹和乙種樹的單價;(2)按學校規(guī)劃,準備購買甲、乙兩種樹共200棵,且甲種樹的數量不少于乙種樹的數量的,請設計出最省錢的購買方案,并說明理由.25.(10分)已知,關于x的一元二次方程(k﹣1)x2+x+3=0有實數根,求k的取值范圍.26.(12分)某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?(2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?27.(12分)周末,甲、乙兩名大學生騎自行車去距學校6000米的凈月潭公園.兩人同時從學校出發(fā),以a米/分的速度勻速行駛.出發(fā)4.5分鐘時,甲同學發(fā)現忘記帶學生證,以1.5a米/分的速度按原路返回學校,取完學生證(在學校取學生證所用時間忽略不計),繼續(xù)以返回時的速度追趕乙.甲追上乙后,兩人以相同的速度前往凈月潭.乙騎自行車的速度始終不變.設甲、乙兩名大學生距學校的路程為s(米),乙同學行駛的時間為t(分),s與t之間的函數圖象如圖所示.(1)求a、b的值.(2)求甲追上乙時,距學校的路程.(3)當兩人相距500米時,直接寫出t的值是.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據二次根式有意義的條件可得a<0,原式變形為﹣(﹣a)?,然后利用二次根式的性質得到,再把根號內化簡即可.【詳解】解:∵﹣>0,∴a<0,∴原式=﹣(﹣a)?,=,=﹣.故選C.【點睛】本題考查的是二次根式的化簡,主要是判斷根號有意義的條件,然后確定值的范圍再進行化簡,是??碱}型.2、B【解析】

由折疊的性質可得CD=CF=,DE=EF,AC=,由三角形面積公式可求EF的長,即可求△ACE的面積.【詳解】解:∵點F是AC的中點,∴AF=CF=AC,∵將△CDE沿CE折疊到△CFE,∴CD=CF=,DE=EF,∴AC=,在Rt△ACD中,AD==1.∵S△ADC=S△AEC+S△CDE,∴×AD×CD=×AC×EF+×CD×DE∴1×=EF+DE,∴DE=EF=1,∴S△AEC=××1=.故選B.【點睛】本題考查了翻折變換,勾股定理,熟練運用三角形面積公式求得DE=EF=1是解決本題的關鍵.3、B【解析】

根據題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,由三角形重心的性質得AD=3x,利用銳角三角函數表示出BD的長,由垂徑定理表示出BC的長,然后根據面積法解答即可.【詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內接正三邊形的邊心距為1,故選B.【點睛】本題考查正多邊形和圓,三角形重心的性質,垂徑定理,銳角三角函數,面積法求線段的長,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.4、A【解析】

設索長為x尺,竿子長為y尺,根據“索比竿子長一托,折回索子卻量竿,卻比竿子短一托”,即可得出關于x、y的二元一次方程組.【詳解】設索長為x尺,竿子長為y尺,根據題意得:.故選A.【點睛】本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.5、B【解析】分析:直接利用反比例函數的性質進而分析得出答案.詳解:A.反比例函數y=,圖象經過點(﹣1,﹣1),故此選項錯誤;B.反比例函數y=,圖象在第一、三象限,故此選項正確;C.反比例函數y=,每個象限內,y隨著x的增大而減小,故此選項錯誤;D.反比例函數y=,當x>1時,0<y<1,故此選項錯誤.故選B.點睛:本題主要考查了反比例函數的性質,正確掌握反比例函數的性質是解題的關鍵.6、B【解析】

直接利用絕對值的性質以及多邊形的性質和平行線的性質分別分析得出答案.【詳解】解:A、若ab=0,則a=0,是隨機事件,故此選項錯誤;B、若|a|=4,則a=±4,是必然事件,故此選項正確;C、一個多邊形的內角和為1000°,是不可能事件,故此選項錯誤;D、若兩直線被第三條直線所截,則同位角相等,是隨機事件,故此選項錯誤;故選:B.【點睛】此題主要考查了事件的判別,正確把握各命題的正確性是解題關鍵.7、B【解析】

先求出不等式的解集,然后從解集中找出最小整數即可.【詳解】∵3x≥x-5,∴3x-x≥-5,∴x≥-5∴不等式3x≥x-5的最小整數解是x=-2.故選B.【點睛】本題考查了一元一次不等式的解法,熟練掌握解一元一次不等式的步驟是解答本題的關鍵.最后一步系數化為1時,如果未知數的系數是負數,則不等號的方向要改變,如果系數是正數,則不等號的方不變.8、A【解析】

如果兩個單項式,它們所含的字母相同,并且相同字母的指數也分別相同,那么就稱這兩個單項式為同類項.【詳解】根據題意可知:x2y和2xy2不是同類項.故答案選:A.【點睛】本題考查了單項式與多項式,解題的關鍵是熟練的掌握單項式與多項式的相關知識點.9、C【解析】

由極差、眾數、中位數、平均數的定義對四個選項一一判斷即可.【詳解】A.極差為5﹣1.5=3.5,此選項正確;B.1.5個數最多,為2個,眾數是1.5,此選項正確;C.將式子由小到大排列為:1.5,1.5,2,2.5,3,4,4.5,5,中位數為×(2.5+3)=2.75,此選項錯誤;D.平均數為:×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此選項正確.故選C.【點睛】本題主要考查平均數、眾數、中位數、極差的概念,其中在求中位數的時候一定要將給出的數據按從大到小或者從小到大的順序排列起來再進行求解.10、A【解析】

作AD⊥y軸于D,作CE⊥y軸于E,則∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性質得出OC=AO,∠1+∠3=90°,證出∠3=∠1,由AAS證明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出結果.【詳解】解:作AD⊥y軸于D,作CE⊥y軸于E,如圖所示:則∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴點A的坐標為(1,),∴AD=1,OD=.∵四邊形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴點C的坐標為(,﹣1).故選A.【點睛】本題考查了正方形的性質、坐標與圖形性質、全等三角形的判定與性質;熟練掌握正方形的性質,證明三角形全等得出對應邊相等是解決問題的關鍵.11、B【解析】A、a+3<0是隨機事件,故A錯誤;B、a﹣3<0是必然事件,故B正確;C、3a>0是不可能事件,故C錯誤;D、a3>0是隨機事件,故D錯誤;故選B.點睛:本題考查了隨機事件.解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件指一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.12、A【解析】分析:根據白球的頻率穩(wěn)定在0.4附近得到白球的概率約為0.4,根據白球個數確定出總個數,進而確定出黑球個數n.詳解:根據題意得:,

計算得出:n=20,

故選A.

點睛:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發(fā)生的概率.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、36【解析】

10=a+b=(m-i)+(n-j)=(m+n)-(i+j)所以:m+n=10+i+j當(m+n)取最小值時,(i+j)也必須最小,所以i和j都是2,這樣才能(i+j)才能最小,因此:m+n=10+2=12也就是:當m+n=12時,m·n最大是多少?這就容易了:m·n<=36所以m·n的最大值就是3614、B.【解析】試題分析:眾數是在一組數據中,出現次數最多的數據,這組數據中80出現12次,出現的次數最多,故這組數據的眾數為80分;中位數是一組數據從小到大(或從大到?。┡帕泻?,最中間的那個數(最中間兩個數的平均數).因此這組40個按大小排序的數據中,中位數是按從小到大排列后第20,21個數的平均數,而第20,21個數都在80分組,故這組數據的中位數為80分.故選B.考點:1.眾數;2.中位數.15、35°【解析】試題分析:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案為35°.考點:圓周角定理.16、【解析】

設買美酒x斗,買普通酒y斗,根據“美酒一斗的價格是50錢、買兩種酒2斗共付30錢”列出方程組.【詳解】依題意得:.故答案為.【點睛】考查了由實際問題抽象出二元一次方程組,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系,列方程組.17、1【解析】

估計利用頻率估計概率可估計摸到黑球的概率為0.3,然后根據概率公式計算這個口袋中黑球的數量,繼而得出答案.【詳解】因為共摸了200次球,發(fā)現有60次摸到黑球,所以估計摸到黑球的概率為0.3,所以估計這個口袋中黑球的數量為20×0.3=6(個),則紅球大約有20-6=1個,故答案為:1.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.18、【解析】試題解析:根據題意得,這一組數的第個數為:故答案為點睛:觀察已知一組數發(fā)現:分子為從1開始的連續(xù)奇數,分母為從2開始的連續(xù)正整數的平方,寫出第個數即可.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)45,,π;(2)滿足條件的∠QQ0D為45°或135°;(3)BP的長為或;(4)≤CQ≤7.【解析】

(1)由已知,可知△APQ為等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的長度;(2)分點Q在BD上方和下方的情況討論求解即可.(3)分別討論點Q在BD上方和下方的情況,利用切線性質,在由(2)用BP0表示BP,由射影定理計算即可;(4)由(2)可知,點Q在過點Qo,且與BD夾角為45°的線段EF上運動,有圖形可知,當點Q運動到點E時,CQ最長為7,再由垂線段最短,應用面積法求CQ最小值.【詳解】解:(1)如圖,過點P做PE⊥AD于點E由已知,AP=PQ,∠APQ=90°∴△APQ為等腰直角三角形∴∠PAQ=∠PAB=45°設PE=x,則AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的長為?2π?=π.故答案為45,,π.(2)如圖,過點Q做QF⊥BD于點F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.當點Q在BD的右下方時,同理可得∠PQ0Q=45°,此時∠QQ0D=135°,綜上所述,滿足條件的∠QQ0D為45°或135°.(3)如圖當點Q直線BD上方,當以點Q為圓心,BP為半徑的圓與直線BD相切時過點Q做QF⊥BD于點F,則QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0?BD∴9=BP×5∴BP=同理,當點Q位于BD下方時,可求得BP=故BP的長為或(4)由(2)可知∠QQ0D=45°則如圖,點Q在過點Q0,且與BD夾角為45°的線段EF上運動,當點P與點B重合時,點Q與點F重合,此時,CF=4﹣3=1當點P與點D重合時,點Q與點E重合,此時,CE=4+3=7∴EF===5過點C做CH⊥EF于點H由面積法可知CH===∴CQ的取值范圍為:≤CQ≤7【點睛】本題是幾何綜合題,考查了三角形全等、勾股定理、切線性質以及三角形相似的相關知識,應用了分類討論和數形結合的數學思想.20、(1);(2)不公平,理由見解析.【解析】

(1)畫樹狀圖列出所有等可能結果數,找到摸出一個黃球和一個白球的結果數,根據概率公式可得答案;(2)結合(1)種樹狀圖根據概率公式計算出兩人獲勝的概率,比較大小即可判斷.【詳解】(1)畫樹狀圖如下:由樹狀圖可知共有20種等可能結果,其中一次性摸出一個黃球和一個白球的有11種結果,∴一次性摸出一個黃球和一個白球的概率為;(2)不公平,由(1)種樹狀圖可知,麗麗去的概率為,張強去的概率為=,∵,∴該游戲不公平.【點睛】本題考查了列表法與樹狀圖法,解題的關鍵是根據題意畫出樹狀圖.21、(1)見解析;(2)PQmin=7,PQmax=13;(3)Smin=,Smax=18.【解析】

(1)根據全等三角形判定定理求解即可.(2)以E為圓心,以5為半徑畫圓,①當E、P、Q三點共線時最PQ最小,②當P點在位置時PQ最大,分類討論即可求解.(3)以E為圓心,以2為半徑畫圓,分類討論出P點在位置時,四邊形PADC面積的最值即可.【詳解】(1)當P為AD中點時,,△BCP為等腰三角形.(2)以E為圓心,以5為半徑畫圓①當E、P、Q三點共線時最PQ最小,PQ的最小值是12-5=7.②當P點在位置時PQ最大,PQ的最大值是(3)以E為圓心,以2為半徑畫圓.當點p為位置時,四邊形PADC面積最大.當點p為位置時,四邊形PADC最小=四邊形+三角形=.【點睛】本題主要考查了等腰三角形性質,直線,面積最值問題,數形結合思想是解題關鍵.22、(1)見解析;(2)①見解析;②279【解析】

(1)利用三角形的中位線得出PM=CE,PN=BD,進而判斷出BD=CE,即可得出結論PM=PN;(2)①先證明△ABD≌△ACE,得BD=CE,同理根據三角形中位線定理可得結論;②如圖4,連接AM,計算AN和DE、EM的長,如圖3,證明△ABD≌△CAE,得BD=CE,根據勾股定理計算CM的長,可得結論【詳解】(1)如圖1,∵點N,P是BC,CD的中點,∴PN∥BD,PN=BD,∵點P,M是CD,DE的中點,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∴△PMN是等腰三角形;(2)①如圖2,∵∠DAE=∠BAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∵點M、N、P分別是線段DE、BC、CD的中點,∴PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形;②當△ADE繞點A逆時針旋轉到第一次點D、E、C在一條直線上時,如圖3,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△CAE,∴BD=CE,如圖4,連接AM,∵M是DE的中點,N是BC的中點,AB=AC,∴A、M、N共線,且AN⊥BC,由勾股定理得:AN==4,∵AD=AE=1,AB=AC=6,∴=,∠DAE=∠BAC,∴△ADE∽△AEC,∴,∴,∴AM=,DE=,∴EM=,如圖3,Rt△ACM中,CM===,∴BD=CE=CM+EM=.【點睛】此題是三角形的綜合題,主要考查了三角形的中位線定理,等腰三角形的判定和性質,全等和相似三角形的判定和性質,直角三角形的性質,解(1)的關鍵是判斷出PM=12CE,PN=123、【解析】

先根據分式混合運算的法則把原式進行化簡,再計算x和y的值并代入進行計算即可【詳解】原式∴原式【點睛】考查分式的混合運算,掌握運算順序是解題的關鍵.24、(1)甲種樹的單價為50元/棵,乙種樹的單價為40元/棵.(2)當購買1棵甲種樹、133棵乙種樹時,購買費用最低,理由見解析.【解析】

(1)設甲種樹的單價為x元/棵,乙種樹的單價為y元/棵,根據“購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;

(2)設購買甲種樹a棵,則購買乙種樹(200-a)棵,根據甲種樹的數量不少于乙種樹的數量的可得出關于a的一元一次不等式,解之即可得出a的取值范圍,再由甲種樹的單價比乙種樹的單價貴,即可找出最省錢的購買方案.【詳解】解:(1)設甲種樹的單價為x元/棵,乙種樹的單價為y元/棵,根據題意得:

,解得:答:甲種樹的單價為50元/棵,乙種樹的單價為40元/棵.(2)設購買甲種樹a棵,則購買乙種樹(200﹣a)棵,根據題意得:解得:∵a為整數,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論