機械控制基礎頻率特性分析_第1頁
機械控制基礎頻率特性分析_第2頁
機械控制基礎頻率特性分析_第3頁
機械控制基礎頻率特性分析_第4頁
機械控制基礎頻率特性分析_第5頁
已閱讀5頁,還剩57頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1第1頁,共62頁,2023年,2月20日,星期一本節(jié)教學內容本節(jié)教學要求

4.1

頻率特性的基本概念

4.1.1頻率特性的定義4.1.2頻率特性的求取4.1.3頻率特性的特點和作用1.明確頻率特性的各種定義3.了解頻率特性的工程意義2.了解頻率特性與傳遞函數(shù)之間的相互聯(lián)系2第2頁,共62頁,2023年,2月20日,星期一4.1頻率特性的基本概念系統(tǒng)傳遞函數(shù)諧波輸入信號頻率響應——

線性定常系統(tǒng)對正弦輸入信號的穩(wěn)態(tài)響應。系統(tǒng)輸出穩(wěn)態(tài)響應穩(wěn)態(tài)輸出幅值和相位均為輸入信號頻率的函數(shù).4.1.1頻率特性的定義3第3頁,共62頁,2023年,2月20日,星期一4.1頻率特性的基本概念4.1.1頻率特性的定義頻率特性:在不同頻率正弦信號作用下,線性系統(tǒng)穩(wěn)態(tài)輸出與輸入的幅值比和相位差,稱為系統(tǒng)的頻率特性,它是信號頻率的函數(shù):():輸出相位-輸入相位幅值比相位差頻率特性幅頻特性相頻特性實頻特性虛頻特性4第4頁,共62頁,2023年,2月20日,星期一4.1頻率特性的基本概念系統(tǒng)傳遞函數(shù)由傳遞函數(shù)求頻率特性:將傳遞函數(shù)中的s換成j4.1.2頻率特性的求取系統(tǒng)穩(wěn)態(tài)輸出幅頻特性相頻特性系統(tǒng)頻率特性5第5頁,共62頁,2023年,2月20日,星期一4.1頻率特性的基本概念4.1.2頻率特性的求取求取系統(tǒng)對諧波輸入的穩(wěn)態(tài)響應根據頻率特性的定義,求系統(tǒng)的幅頻特性和相頻特性():輸出相位-輸入相位根據頻率特性的定義,列寫系統(tǒng)的頻率特性由頻率響應求頻率特性:根據頻率特性的定義求取,其基本步驟如下:6第6頁,共62頁,2023年,2月20日,星期一4.1頻率特性的基本概念4.1.3頻率特性的特點和作用系統(tǒng)的頻率特性就是其單位脈沖響應函數(shù)w(t)的傅立葉變換,即由頻率特性可對w(t)進行頻譜分析,通過分析系統(tǒng)脈沖響應函數(shù)中所包含的頻率成分,進而了解系統(tǒng)的動態(tài)性能。頻率特性由線性系統(tǒng)正弦輸入的穩(wěn)態(tài)響應得到,因此頻率特性分析是一種利用系統(tǒng)時間響應的穩(wěn)態(tài)部分進行分析的方法,這與時間響應分析法既有本質的區(qū)別,又有內在的聯(lián)系。頻率特性是傳遞函數(shù)的特例,是定義在復平面虛軸上的傳遞函數(shù),但同樣包含了系統(tǒng)或元部件的全部動態(tài)結構參數(shù),因此頻率特性與系統(tǒng)的微分方程、傳遞函數(shù)一樣反映了系統(tǒng)的固有特性。相對于時域分析,頻率特性更適用于高階系統(tǒng)的動態(tài)特性分析,在頻域中進行控制器的設計與校正更為直觀、簡便。頻率特性在實際工程應用中也有局限性。由于工程系統(tǒng)多少有些非線性,因而對于諧波輸入,系統(tǒng)的輸出并非嚴格的諧波信號,由此頻率分析所得到的結論與實際系統(tǒng)會有一定出入。頻率特性的特點——7第7頁,共62頁,2023年,2月20日,星期一4.1頻率特性的基本概念舉例——

求圖示系統(tǒng)頻率特性傳遞函數(shù)頻率特性對于低頻信號對于高頻信號頻率特性分析隨著的增加,幅值A()不斷減小,相位

()滯后不斷增加。頻率特性反映了系統(tǒng)(電路)的內在性質,與外界因素無關。8第8頁,共62頁,2023年,2月20日,星期一4.1頻率特性的基本概念課后作業(yè)第五版教材151~152頁:4.3,4.5,4.10第六版教材159~159頁:4.3,4.5,4.11注:同一題目在第五、六版教材中的題號可能不同。9第9頁,共62頁,2023年,2月20日,星期一4.2

頻率特性的圖示方法本節(jié)教學內容4.2.1頻率特性圖的定義極坐標圖對數(shù)坐標圖4.2.2典型環(huán)節(jié)的頻率特性圖-Nyquist圖Bode圖本節(jié)教學要求1.掌握頻率特性極坐標圖和對數(shù)坐標圖的坐標系的定義2.掌握典型環(huán)節(jié)頻率特性的圖形表示以及相應的物理意義10第10頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.1頻率特性圖的定義當給定時,復數(shù)G(j)在復平面上有兩種表示方法:向量表示:向量的模A()為G(j),向量與正實軸的夾角為,并規(guī)定逆時針方向旋轉為正;坐標表示:用復數(shù)G(j)的實部和虛部分別表示G(j)端點的橫坐標和縱坐標。極坐標圖:極坐標圖又稱Nyquist圖,也稱幅相頻率特性圖,指在復平面上,當值由0變化到時的G(j)矢端移動所形成的軌跡。11第11頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.1頻率特性圖的定義對數(shù)坐標圖——

將G(j)的幅值G(j)和幅角分別用圖表示,并取的對數(shù)值來繪制自變量的坐標就構成了對數(shù)坐標圖。此方法最早由貝爾實驗室的工程師Bode提出,現(xiàn)通稱Bode圖。兩對數(shù)坐標圖(幅頻、相頻)的橫軸用以10為底的對數(shù)值分度,但習慣上不標lg,而是標真值.對數(shù)幅頻特性的縱坐標是20lg|G(j)|,其單位是分貝(dB).對數(shù)相頻特性的縱坐標是相位,用度表示.112第12頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.1頻率特性圖的定義Bode圖坐標系的選取,拓寬了圖形所能表示的頻率、幅值范圍;幅值相乘變?yōu)橄嗉?,簡化作圖:

=0

不可能在橫坐標上表示出來;橫坐標上表示的最低頻率由所感興趣的頻率范圍確定;通常只標注的真值.Bode圖的要點——13第13頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法Bode圖幅頻:相頻:比例(放大)環(huán)節(jié)——4.2.2典型環(huán)節(jié)的頻率特性圖K>1,分貝數(shù)為正;K<1,分貝數(shù)為負。改變K值,幅頻曲線升高或降低,但相頻曲線不變。Nyquist圖幅頻:相頻:14第14頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.2典型環(huán)節(jié)的頻率特性圖Bode圖幅頻:相頻:幅頻:頻率每增加10倍,幅值降低20分貝,是一條過(1,0),且斜率為-20dB/dec的直線。相頻:恒為-900的水平線。積分環(huán)節(jié)——Nyquist圖幅頻:相頻:(:0G(j):0)15第15頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.2典型環(huán)節(jié)的頻率特性圖微分環(huán)節(jié)——Nyquist圖幅頻:相頻:(由0,G(j)也由0

。)Bode圖幅頻:相頻:幅頻:頻率每增加10倍,幅值增加20分貝,是一條過(1,0),且斜率為20dB/dec的直線。相頻:恒為900的水平線。16第16頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.2典型環(huán)節(jié)的頻率特性圖圖形特點圖形在第四象限,為直徑為1,過(1/2,0)的半圓:慣性環(huán)節(jié)——

Nyquist圖頻率特性幅頻:相頻:實頻:虛頻:17第17頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.2典型環(huán)節(jié)的頻率特性圖慣性環(huán)節(jié)——

幅頻:相頻:頻率特性Bode圖(1)高頻段(1/T<<)近似為斜率為-20dB/dec的直線,稱為高頻漸近線.T=1/T為慣性環(huán)節(jié)的轉折頻率(此處幅頻特性與漸近線誤差最大)。慣性環(huán)節(jié)具有低通濾波特性。低頻段(0<<1/T)近似為0dB的水平線,稱為低頻漸近線。幅頻特性曲線1/T18第18頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.2典型環(huán)節(jié)的頻率特性圖慣性環(huán)節(jié)——

相頻特性曲線完整圖形幅頻:相頻:頻率特性Bode圖(2)19第19頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.2典型環(huán)節(jié)的頻率特性圖一階微分環(huán)節(jié)——

Bode圖幅、相頻特性與慣性環(huán)節(jié)均差一負號,因此分別關于0dB線和0度線對稱。具有高通特性,使得抑制噪聲的能力下降。Nyquist圖20第20頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.2典型環(huán)節(jié)的頻率特性圖振蕩環(huán)節(jié)

——

Nyquist圖(1)頻率特性幅頻:相頻:圖形在三、四象限,形狀與阻尼比有關。圖形特點r|G(r)|21第21頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.2典型環(huán)節(jié)的頻率特性圖振蕩環(huán)節(jié)

——

當0.707時,在=n附近,A()出現(xiàn)峰值Mr,即發(fā)生諧振。諧振峰值Mr對應的頻率為諧振頻率r。諧振頻率與諧振峰值諧振現(xiàn)象系統(tǒng)產生諧振時,只需要輸入很少的能量,就可以產生很大的振動位移。因此諧振即可以帶來危害,也可造福人類。跨越華盛頓州塔科馬峽谷的首座大橋,開通于1940-7-1。只要有風,這座大橋就會晃動。當年11月7日,一陣風引起了橋的晃動,而且晃動越來越大,直到整座橋斷裂。22第22頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.2典型環(huán)節(jié)的頻率特性圖振蕩環(huán)節(jié)

——

Bode圖(1)

頻率特性幅頻:相頻:低頻漸近線為0dB的水平線(0<<n)高頻漸近線斜率為-40dB/dec(

n<<)幅頻特性當<0.707時,系統(tǒng)會產生諧振,因此應對幅頻特性進行修正。(T=n為振蕩環(huán)節(jié)轉折頻率)n23第23頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.2典型環(huán)節(jié)的頻率特性圖振蕩環(huán)節(jié)

——

Bode圖(2)

相頻特性完整圖形繪制振蕩環(huán)節(jié)Bode圖(包括Nyquist圖),一定要區(qū)分>0.707和<0.707這兩種不同情況,尤其是幅頻特性。24第24頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.2典型環(huán)節(jié)的頻率特性圖延時環(huán)節(jié)——

Bode圖Nyquist圖25第25頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法4.2.2典型環(huán)節(jié)的頻率特性圖延時環(huán)節(jié)與慣性環(huán)節(jié)比較不同近似當延時時間很小,或信號頻率很低時,延時環(huán)節(jié)可近似為慣性環(huán)節(jié).26第26頁,共62頁,2023年,2月20日,星期一4.2頻率特性的圖示方法課后作業(yè)教材第五版152~153頁:4.12(2)、(5)、(6)(同時畫出BODE圖)教材第六版160~161頁:4.13(1)、(3)、(4)(同時畫出BODE圖)注:同一題目在第五、六版教材中的題號可能不同。27第27頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性本節(jié)教學內容4.3.1系統(tǒng)開環(huán)Nyquist圖4.3.2系統(tǒng)開環(huán)Bode圖本節(jié)教學要求1.掌握系統(tǒng)開環(huán)Nyquist圖的繪制2.掌握系統(tǒng)開環(huán)Bode圖的繪制28第28頁,共62頁,2023年,2月20日,星期一系統(tǒng)開環(huán)Nyquist圖及其繪制列寫系統(tǒng)開環(huán)頻率特性列寫系統(tǒng)開環(huán)傳遞函數(shù)4.3.1系統(tǒng)開環(huán)Nyquist圖4.3系統(tǒng)開環(huán)頻率特性29第29頁,共62頁,2023年,2月20日,星期一系統(tǒng)開環(huán)Nyquist圖及其繪制4.3.1系統(tǒng)開環(huán)Nyquist圖4.3系統(tǒng)開環(huán)頻率特性列寫幅頻特性和相頻特性的表達式繪制:求A(0)、(0);A(∞)、(∞);補充必要的特征點(如與坐標軸的交點);根據A()、()的變化趨勢,畫出Nyquist圖的大致形狀。幅頻特性:組成系統(tǒng)各典型環(huán)節(jié)的幅頻特性之乘積;相頻特性:組成系統(tǒng)的各典型環(huán)節(jié)的相頻特性之代數(shù)和.30第30頁,共62頁,2023年,2月20日,星期一4.3.1系統(tǒng)開環(huán)Nyquist圖4.3系統(tǒng)開環(huán)頻率特性

例1——已知系統(tǒng)的開環(huán)傳遞函數(shù),試繪制系統(tǒng)的開環(huán)Nyquist圖.頻率特性幅頻相頻特殊點由A()、()的單調性,繪出完整的系統(tǒng)開環(huán)Nyquist圖。31第31頁,共62頁,2023年,2月20日,星期一4.3.1系統(tǒng)開環(huán)Nyquist圖4.3系統(tǒng)開環(huán)頻率特性例2:已知系統(tǒng)的開環(huán)傳遞函數(shù),繪制系統(tǒng)開環(huán)Nyquist圖并求與實軸的交點.Nyquist圖與實軸交點由U(0)=-7,V(0)=-還可確定Nyquist圖起始點的漸近線。32第32頁,共62頁,2023年,2月20日,星期一4.3.1系統(tǒng)開環(huán)Nyquist圖4.3系統(tǒng)開環(huán)頻率特性例3——

已知系統(tǒng)的開環(huán)傳遞函數(shù),繪制系統(tǒng)的開環(huán)Nyquist圖。=幅值單調衰減相位出現(xiàn)極值33第33頁,共62頁,2023年,2月20日,星期一4.3.1系統(tǒng)開環(huán)Nyquist圖4.3系統(tǒng)開環(huán)頻率特性例4(P130)

已知系統(tǒng)的開環(huán)傳遞函數(shù),繪制系統(tǒng)的開環(huán)Nyquist圖。34第34頁,共62頁,2023年,2月20日,星期一4.3.1系統(tǒng)開環(huán)Nyquist圖4.3系統(tǒng)開環(huán)頻率特性

Nyquist圖的一般形狀0型系統(tǒng)(v=0)起于正實軸,終于原點。I型系統(tǒng)(v=1)起點于負虛軸無窮遠處,終止于原點。II型系統(tǒng)(v=2)起點于負實軸無窮遠處,終止于原點.35第35頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性將開環(huán)傳遞函數(shù)和頻率特性表示成若干典型環(huán)節(jié)的串聯(lián)形式

幅頻特性:組成系統(tǒng)的各典型環(huán)節(jié)的對數(shù)幅頻特性之代數(shù)和.相頻特性:組成系統(tǒng)的各典型環(huán)節(jié)的相頻特性之代數(shù)和.4.3.2系統(tǒng)開環(huán)Bode圖系統(tǒng)開環(huán)Bode圖的繪制求出各個環(huán)節(jié)的轉折頻率,并在Bode圖中的軸上標出;按轉折頻率從低至高繪制各環(huán)節(jié)頻率特性,并疊加。36第36頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性4.3.2系統(tǒng)開環(huán)Bode圖

例1(P142)一開環(huán)傳遞函數(shù)為作其Bode圖。傳遞函數(shù)化成標準形式求取頻率特性T1=0.4s-1T2=40s-1=2s-1確定各環(huán)節(jié)轉折頻率Ti

軸:0.1min(Ti)~10max(Ti)

取0.1~400

確定坐標范圍

37第37頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性-3040-101020lg|G|dB0200.111010045°90°-90°∠G/度對數(shù)相角頻率特性-200.1110100-45°0°對數(shù)幅值頻率特性24000.4T2τT138第38頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性-3040-101020lg|G|dB0200.111010045°90°-90°∠G/度對數(shù)相角頻率特性-200.1110100-45°0°對數(shù)幅值頻率特性24000.4T2T1-20dB/dec39第39頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性-3040-101020lg|G|dB0200.111010045°90°-90°∠G/度對數(shù)相角頻率特性-200.1110100-45°0°對數(shù)幅值頻率特性24000.4T2T1-20dB/dec+20dB/dec40第40頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性-3040-101020lg|G|dB0200.111010045°90°-90°∠G/度對數(shù)相角頻率特性-200.1110100-45°0°對數(shù)幅值頻率特性24000.4T2T1-20dB/dec+20dB/dec-20dB/dec41第41頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性-3040-101020lg|G|dB0200.111010045°90°-90°∠G/度對數(shù)相角頻率特性-200.1110100-45°0°對數(shù)幅值頻率特性24000.4T2T1+20dB/dec-20dB/dec[-20][-20]42第42頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性-3040-101020lg|G|dB0200.111010045°90°-90°∠G/度對數(shù)相角頻率特性-200.1110100-45°0°對數(shù)幅值頻率特性24000.4T2T1[-20][-20]T120lg3=9.54dB43第43頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性-3040-101020lg|G|dB0200.111010045°90°-90°∠G/度對數(shù)相角頻率特性-200.1110100-45°0°對數(shù)幅值頻率特性24000.4T2[-20][-20]T1G(j)44第44頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性Bode圖特點最低頻段的對數(shù)幅頻特性可近似為L()=20lgK-20vlg,當=1rad/s時,L()=20lgK;如果各環(huán)節(jié)的對數(shù)幅頻特性用漸近線表示則對數(shù)幅頻特性為一系列折線,折線的轉折點為各環(huán)節(jié)的轉折頻率(注意:微分、積分環(huán)節(jié)沒有轉折頻率);對數(shù)幅頻特性的漸近線每經過一個轉折點其斜率相應發(fā)生變化,斜率變化量由當前轉折頻率對應的環(huán)節(jié)決定。如慣性環(huán)節(jié),-20dB/dec;振蕩環(huán)節(jié),-40dB/dec;一階微分環(huán)節(jié),+20dB/dec;二階微分環(huán)節(jié),+40dB/dec。4.3.2系統(tǒng)開環(huán)Bode圖45第45頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性4.3.2系統(tǒng)開環(huán)Bode圖將開環(huán)傳遞函數(shù)表示為典型環(huán)節(jié)的串聯(lián);確定各環(huán)節(jié)的轉折頻率并由小到大標示在對數(shù)頻率軸上;計算20lgK,在=1rad/s處找到縱坐標等于20lgK的點,過該點作斜率等于-20vdB/dec的直線,向左延長此線至所有環(huán)節(jié)的轉折頻率之左并交于縱軸,得到最低頻段的漸近線;向右延長最低頻段漸近線,每遇到一個轉折頻率改變一次漸近線斜率:慣性環(huán)節(jié),-20dB/dec振蕩環(huán)節(jié),-40dB/dec一階微分環(huán)節(jié),+20dB/dec二階微分環(huán)節(jié),+40dB/dec對漸近線進行修正以獲得準確的幅頻特性;相頻特性曲線由各環(huán)節(jié)的相頻特性相加獲得。

單回路系統(tǒng)開環(huán)Bode圖的繪制(P143)46第46頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性4.3.2系統(tǒng)開環(huán)Bode圖

例2:作開環(huán)系統(tǒng)Bode圖.典型環(huán)節(jié)形式的頻率特性系統(tǒng)由以下環(huán)節(jié)構成:放大環(huán)節(jié)K=7.5;積分環(huán)節(jié)1/j;二階振蕩環(huán)節(jié),轉折頻率T1=21/2s-1,阻尼比;慣性環(huán)節(jié),轉折頻率T2=2s-1;一階微分環(huán)節(jié),轉折頻率T3=3s-1.典型環(huán)節(jié)分析對數(shù)幅頻特性(漸近線)最低頻段幅頻特性:L()20lg7.5-lg47第47頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性4.3.2系統(tǒng)開環(huán)Bode圖

例2:作開環(huán)系統(tǒng)Bode圖.曲線修正48第48頁,共62頁,2023年,2月20日,星期一4.3系統(tǒng)開環(huán)頻率特性4.3.2系統(tǒng)開環(huán)Bode圖

例2:作開環(huán)系統(tǒng)Bode圖.一階微分環(huán)節(jié)相頻特性49第49頁,共62頁,2023年,2月20日,星期一4.4閉環(huán)系統(tǒng)頻率特性本節(jié)教學內容4.4.1開環(huán)頻率特性與閉環(huán)頻率特性的關系本節(jié)教學要求1.了解閉環(huán)頻率特性的概念及其分析方法2.了解閉環(huán)頻率特性的特征量4.4.2閉環(huán)頻率特性的特征量50第50頁,共62頁,2023年,2月20日,星期一4.4閉環(huán)系統(tǒng)頻率特性4.4.1開環(huán)頻率特性與閉環(huán)頻率特性關系(單位反饋)幅頻閉環(huán)頻率特性相頻逐點取,計算出GB(j)的幅值及相位,可得閉環(huán)幅頻特性AB()-和閉環(huán)相頻特性()-。0AB()=00o-180o()G(j)G(j)+-Xi(j)Xo(j)51第51頁,共62頁,2023年,2月20日,星期一4.4閉環(huán)系統(tǒng)頻率特性4.4.1開環(huán)頻率特性與閉環(huán)頻率特性關系(非單位反饋)

對非單位反饋系統(tǒng),GB(j)與GK(j)的關系為:即對非單位反饋系統(tǒng),可直接利用GK(j)=G(j)H(j)來分析系統(tǒng).52第52頁,共62頁,2023年,2月20日,星期一4.4閉環(huán)系統(tǒng)頻率特性4.4.2閉環(huán)系統(tǒng)頻率特性的特征量零頻值A(0):

頻率接近于零時,系統(tǒng)輸出的幅值與輸入的幅值比。roA()A(0)0.707A(0)AmaxbM(與穩(wěn)態(tài)誤差相關?。?3第53頁,共62頁,2023年,2月20日,星期一4.4閉環(huán)系統(tǒng)頻率特性4.4.2閉環(huán)系統(tǒng)頻率特性的特征量諧振頻率:r

相對諧振峰值:截止頻率b:帶寬:0≤ω≤ωb對應的頻率范圍復現(xiàn)頻率M:指幅頻特性與A(0)的差值第一次達到Δ時的頻率值(Δ為預先規(guī)定反映低頻輸入信號的容許誤差值)。roA()A(0)0.707A(0)AmaxbM54第54頁,共62頁,2023年,2月20日,星期一4.5最小相位系統(tǒng)例判別下列兩系統(tǒng)是否為最小相位系統(tǒng)其中:T1>T>0最小相位系統(tǒng)——若系統(tǒng)傳遞函數(shù)G(s)的所有零點和極點均在[s]平面的左半平面,則稱為“最小相位傳遞函數(shù)”,具有此傳遞函數(shù)的系統(tǒng)稱為最小相位系統(tǒng)。系統(tǒng)G1(s)的零極點全在左半平面,為最小相位系統(tǒng)。系統(tǒng)G2(s)的零點在右半平面,極點在左半平面,為非最小相位系統(tǒng)。最小相位系統(tǒng)的相頻特性與幅頻特性按最小相位(極性相同時,相位的絕對值最?。亲钚∠辔幌到y(tǒng)則沒有這種對應關系。j[s]j[s](a)(b)55第55頁,共62頁,2023年,2月20日,星期一3.6系統(tǒng)誤差分析與計算課后作業(yè)教材第五版152~153頁:4.12(7),4.15(7)

4.14(選做題)教材第六版160~160頁:4.13(5),4.18(2)

4.17(選做題)56第56頁,共62頁,2023年,2月20日,星期一實驗二頻域響應實驗一、實驗目的熟悉TD4011型超低頻頻率特性分析儀的使用(該儀器的面板見附錄3)。觀察線性定常系統(tǒng)在不同頻率諧波信號輸入作用下的穩(wěn)態(tài)響應。學習線性環(huán)節(jié)頻率特性的實驗測試方法。根據測試數(shù)據,繪制系統(tǒng)的頻率特性BODE圖,并與理論計算結果進行比較。57第57頁,共62頁,2023年,2月20日,星期一實驗二頻域響應實驗二、實驗內容熟悉實驗儀器TD4011型超低頻頻率特性分析儀可用于測量自

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論